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Abstract
In this paper, we consider Riemannian online convex optimization with dynamic regret.
First, we propose two novel algorithms, namely the Riemannian Online Optimistic Gradient
Descent (R-OOGD) and the Riemannian Adaptive Online Optimistic Gradient Descent (R-
AOOGD), which combine the advantages of classical optimistic algorithms with the rich
geometric properties of Riemannian manifolds. We analyze the dynamic regrets of the
R-OOGD and R-AOOGD in terms of regularity of the sequence of cost functions and
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comparators. Next, we apply the R-OOGD to Riemannian zero-sum games, leading to the
Riemannian Optimistic Gradient Descent Ascent algorithm (R-OGDA). We analyze the
average iterate and best-iterate of the R-OGDA in seeking Nash equilibrium for a two-
player, zero-sum, g-convex-concave games. We also prove the last-iterate convergence of
the R-OGDA for g-strongly convex-strongly concave problems. Our theoretical analysis
shows that all proposed algorithms achieve results in regret and convergence that match
their counterparts in Euclidean spaces. Finally, we conduct several experiments to verify
our theoretical findings.
Keywords: Riemannian Manifold, Online Learning, Zero-sum Games

1 Introduction

Online optimization has become increasingly important in recent decades, as it aims to opti-
mize a sequence of decision variables in real-time, despite uncertainty and limited feedback.
The online optimization has numerous applications in fields such as machine learning, signal
imaging, and control systems (Agmon, 1954; Hazan, 2022; Arnold et al., 2019).

The decision variables in online learning may be defined on Riemannian manifolds. Mod-
eling signals on Riemannian manifolds can enhance data representation capabilities (Liu
et al., 2019) and reduce problem dimension (Li et al., 2021; Hu et al., 2020). Moreover, Rie-
mannian optimization benefits from the property of geodesic convexity (g-convexity) (Allen-
Zhu et al., 2018), which permits conversion of Euclidean non-convex optimization problems
into g-convex ones by appropriately choosing the Riemannian metric on the manifold. In this
paper, we focus on the Riemannian online convex optimization (R-OCO) problem, defined
as:

min
xt∈K⊂M

ft(xt), (1)

where a learner plays against an adversary or nature. In each round t ∈ 1, 2, . . . , T , the
learner selects an action xt from a geodesically convex (g-convex) subset K. The adversary
or nature then produces a geodesically convex (g-convex) function ft defined on K for which
the learner has no prior knowledge. Finally, the learner receives feedback on ft and incurs
a corresponding loss ft(xt). The problem (1) of Riemannian online convex optimization
(R-OCO) is an extension of the classic online convex optimization in Euclidean spaces, with
potential applications in machine learning, including robotic control, medical imaging, and
neural networks (Lee and Kriegman, 2005; Fan et al., 2020; Shin and Oh, 2022).

In the context of the R-OCO problem, one important metric is the dynamic regret (Jad-
babaie et al., 2015), which measures the difference in cumulative loss between an online
optimization algorithm and a sequence of comparators {u1, . . . , uT }, that is:

RegD(u1, . . . , uT ) =
T∑
t=1

ft(xt)−
T∑
t=1

ft(ut).

Compared to the well-known static regret (Zinkevich, 2003)

RegS(T ) =
T∑
t=1

ft(xt)− min
x∈M

T∑
t=1

ft(x),
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the dynamic regret provides a more comprehensive evaluation of online algorithms, as it
takes into account the adjustments and adaptations of the environment at each time step.

While it has been demonstrated that online convex optimization algorithms may result
in Ω(T ) dynamic regret bound in the worst case, it is also possible to bound dynamic regrets
related to quantities that reflect the regularity of the problem (Jadbabaie et al., 2015; Zhang
et al., 2018; Zhao et al., 2020), such as the path-length

PT :=

T∑
t=2

d(ut, ut−1),

the gradient variation

VT :=
T∑
t=2

sup
x∈K

∥∇ft(x)−∇ft−1(x)∥2,

and the comparator loss

FT :=
T∑
t=1

ft(ut).

If the comparators ut and the cost function ft adapts slowly, the dynamic regret can be
greatly reduced.

In Euclidean online convex optimization (OCO), the Online Optimistic Gradient Descent
algorithm (OOGD)(Jadbabaie et al., 2015; Zhao et al., 2020) is a noteworthy example that
certifies dynamic regret bounds based on path-length and gradient variation. The OOGD
has been extensively studied and shown to achieve near-optimal dynamic regret bounds for a
wide range of convex optimization problems. For instance, Jadbabaie et al. (2015) presented
a dynamic regret bound of O(PT

√
1 + VT ) for the vanilla OOGD, and then Zhao et al.

(2020) introduced a meta-expert structured OOGD that achieved a dynamic regret bound
of O(

√
(1 + PT + VT )(1 + PT )). Moreover, the OOGD algorithm has also been applied to

solve zero-sum games (Mokhtari et al., 2020b; Wei et al., 2021; Gorbunov et al., 2022), which
may be used to study generative adversarial networks (Mertikopoulos et al., 2019).

Despite its success in Euclidean space, the extension of OOGD to Riemannian manifolds
for dynamic regret has received limited attention. Some studies have examined the static
regret of the R-OCO problem. Becigneul and Ganea (2019) studied the static regret of
Riemannian adaptive methods, which required a product manifold structure. Wang et al.
(2023) investigated the static regrets of the Riemannian online gradient descent algorithm
and Riemannian online bandit methods.

With dynamic regrets, Maass et al. (2022) explored a zeroth-order dynamic regret bound
for strongly g-convex and strongly g-smooth functions on Hadamard manifolds. In recent
works, Hu et al. (2023) proposed several algorithms for adaptive dynamic regret bounds,
incorporating gradient variation bounds, small loss bounds, and best-of-world bounds. In
particular, Hu et al. (2023) introduced the gradient variation regret bounds via a Riemannian
extragradient algorithm framework. The extragradient framework, similar to optimistic
algorithms, typically requires two gradients per iteration. One gradient is computed at the
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current decision point xt, while the other gradient is obtained by extrapolating the current
gradient to a midpoint yt. However, it is worth noting that optimistic algorithms can operate
solely based on the strategy point xt. Thus, developing a Riemannian version of OOGD is
crucial for advancing the field of online optimization on manifolds.

Contribution Motivated by above, this paper aims to design optimistic online methods
for Riemannian online optimization and derive dynamic regret bounds with respect to the
regularity of the problem. The contribution of this paper is summarized as follows:

• We propose the Riemannian online optimistic gradient descent algorithm (R-OOGD),
which uses only the gradient of the strategy point. We establish an O(PT

√
1 + VT )

dynamic regret bound for g-convex losses.

• We introduce the meta-expert framework in Hu et al. (2023) to the R-OOGD algorithm
and propose the Riemannian online adaptive optimistic gradient descent (R-AOOGD)
algorithm. We then establish a dynamic regret bound of O(

√
(1 + VT + PT )(1 + PT ))

of the R-AOOGD on g-convex losses.

• We apply the R-OOGD algorithm to two-player zero-sum games on Riemannian man-
ifolds and obtain the Riemannian Optimistic Gradient Descent Ascent algorithm (R-
OGDA) for Nash equilibrium seeking in Riemannian zero-sum games. We prove O( 1

T )
average-iterate and O( 1√

T
) best-iterate convergence of the R-OGDA for g-convex-

concave games. Moreover, we prove linear last-iterate convergence for g-strongly
convex-strongly concave games.

The established regret bounds and convergence rates in our paper match the works in Eu-
clidean space (Jadbabaie et al., 2015; Zhao et al., 2020; Mokhtari et al., 2020a,b). We briefly
list them in Table 1.

2 Related Work

In this section, we will provide a brief review of previous work on online convex optimization
and zero-sum games in both Euclidean spaces and Riemannian manifolds.

2.1 Online Convex Optimization

Euclidean OCO The concept of online optimization and static regret was introduced by
Zinkevich (2003). Zinkevich (2003) also proposed the online gradient descent (OGD) method
and constructed an O(

√
T ) regret bound on convex functions. Later, Hazan et al. (2006)

demonstrated that the OGD method achieves an O(log T ) regret bound on strongly convex
functions. Abernethy et al. (2008) proved the universal lower bounds for online algorithms
to be Ω(

√
T ) and Ω(log T ) for convex and strongly convex functions respectively, which

illustrated that the bounds of OGD are tight.
Aside from regret bounds related to the time horizon T , several papers explored the idea

of exploiting regularity in the online optimization problem to achieve better regret bounds.
For example, in addressing the online optimization problem where the loss functions have
a small deviation, Chiang et al. (2012) proposed an online version of the extragradient al-
gorithm, which achieved a regret bound of O(

√
1 + VT ) with respect to gradient variation
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Algorithm Problem setting Result

R-OOGD
R-OCO, g-convex O( ζ0√

σ0
PT

√
1 + VT )

Euclidean, convex O(PT

√
1 + VT )

(Jadbabaie et al., 2015)

R-AOOGD R-OCO, g-convex O( ζ0√
σ0

√
(1 + VT + PT )(1 + PT ))

Euclidean, convex O(
√
(1 + VT + PT )(1 + PT ))
(Zhao et al., 2020)

R-OGDA

RZS, g-convex-concave, O( ζ1
σ1T

)average-iterate
Euclidean convex-concave O( 1

T )
average-iterate (Mokhtari et al., 2020b)

RZS, g-convex-concave O( 1√
σ1T

)
best-iterate

Euclidean convex-concave O( 1√
T
)

best-iterate (Chavdarova et al., 2021)
RZS, g-SCSC, last-iterate linear

Euclidean, SCSC, linear
last-iterate (Mokhtari et al., 2020a)

Table 1: Comparison of Algorithms in our work and corresponding Euclidean algorithms.
SCSC denotes strongly convex-strongly concave. The constants ζ0, ζ1, σ0, σ1 are
related to Riemannian curvature and diameter bounds.

VT :=
∑T

t=2 supx∈K ∥∇ft(x)−∇ft−1(x)∥2 on convex and smooth functions. The online extra-
gradient algorithm required constructing two gradients per iteration. To improve upon the
extragradient algorithm, Rakhlin and Sridharan (2013) proposed an online optimistic gradi-
ent descent (OOGD) method. The OOGD algorithm was also proved to achieve O(

√
1 + VT )

regret bounds by requiring only one gradient per iteration, which is suitable for one-point
gradient feedback.

For the dynamic regret, Zinkevich (2003) established a dynamic regret bound of O((1+
PT )

√
T ) for the OGD algorithm, and Jadbabaie et al. (2015) derived a dynamic regret

bound of O(PT

√
1 + VT ) for the OOGD algorithm. However, there is still a gap between

these results and the universal lower dynamic regret bound of Ω(
√
(1 + PT )T ) mentioned

by Zhang et al. (2018). To address this issue, Zhang et al. (2018) introduced a meta-
expert framework to the OGD algorithm, which led to an optimal dynamic regret bound
of O(

√
(1 + PT )T ). Building upon the work of Zhang et al. (2018), Zhao et al. (2020)

applied the meta-expert framework to the OOGD algorithm using a novel Online Opti-
mistic Hedge technique in the meta-algorithm and obtained a gradient-variation bound
O(

√
(1 + VT + PT )(1 + PT )), a small-loss bound O(

√
(1 + FT + PT )(1 + PT )), and a best-

of-both-worlds bound O(
√
(1 + min(VT , FT ) + PT )(1 + PT )) in Euclidean space. In this

paper, the proposed R-OOGD algorithm and the R-AOOGD algorithm extend the results
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of the above Euclidean online optimistic algorithms to Riemannian manifolds beyond the
restriction of linear structure.

Riemannian OCO Riemannian optimization has garnered significant interest from re-
searchers in the past few decades (Zhang and Sra, 2016; Ahn and Sra, 2020; Becigneul and
Ganea, 2019). In the context of Riemannian online convex optimization, Antonakopoulos
et al. (2020) introduced a regularized method that leverages the Riemann–Lipschitz conti-
nuity condition, which specifically targeted convex functions in an ambient Euclidean space.
Furthermore, Becigneul and Ganea (2019) provided regret analysis for Riemannian versions
of the Adagrad and Adam algorithms, which relied on a product manifold structure. Later
on, Maass et al. (2022) proposed a Riemannian online zeroth-order algorithm and analyzed
the dynamic regret bound of O(

√
T +P ∗

T ) in the setting of g-strongly convex and g-smooth
functions on Hadamard manifolds. Here, P ∗

T represents the length of the path between the
optimal solutions P ∗

T :=
∑T

t=2 d(x
∗
t , x

∗
t+1). Wang et al. (2023) proposed Riemannian online

gradient methods with a sublinear static regret of O(
√
T ) in the full information setting,

O(T 2/3) in the one-point bandit information setting, and O(
√
T ) in the two-point bandit

information setting for g-convex functions. In this paper, the dynamic regret bound of the
proposed R-OOGD algorithm holds for geodesically convex functions on general manifolds
and achieves a better static regret O(

√
1 + VT ) than the above mentioned results.

A recent breakthrough in understanding dynamic regret for Riemannian OCO was made
by Hu et al. (2023). Hu et al. (2023) first established a lower bound O(

√
(1 + PT )T ) for min-

imax dynamic regrets for the Riemannian OCO. Then, Hu et al. (2023) utilized the Fréchet
mean and proposed a Riemannian meta-expert structure into the R-OGD, effectively achiev-
ing the universal lower bound for minimax dynamic regret. Additionally, Hu et al. (2023)
enhanced the meta-algorithm by incorporating Optimistic Hedge methods into Riemannian
manifolds, which lead to a gradient-variation regret bound O(

√
(1 + VT + PT )(1 + PT )),

a small-loss regret bound O(
√
(1 + FT + PT )(1 + PT )), and a best-of-both-worlds regret

bound O(
√
(1 + min(VT , FT ) + PT )(1 + PT ) + min(VT , FT ) log T ). Moreover, Hu et al.

(2023) also extended the regret bounds to the constrained setting using improper learn-
ing techniques. In order to obtain gradient-related dynamic regret bounds, Hu et al. (2023)
proposed the RADRv algorithm, which utilizes an extragradient-type algorithm (referred to
as R-OCEG) as expert algorithm. The main insight of the R-OCEG algorithm is the ex-
trapolation step, where the gradient of the current strategy point is used to extrapolate and
obtain a midpoint. The current strategy point is then updated based on the gradient of the
extrapolated point. As a result, the R-OCEG algorithm requires two gradient information
in each iteration. In contrast, our R-OOGD algorithm does not rely on gradient extrap-
olation. Instead, the R-OOGD combines the gradient at the current decision point with
parallel transported gradients from past decision points to perform update. The approach
that parallel transporting past gradients allows our R-OOGD algorithm to achieve the same
dynamic regret bound of O(PT

√
1 + VT ) as the R-OCEG, while requiring only one round of

gradient computations each turn. Furthermore, compared to the RADRv, our R-AOOGD
algorithm, which employs the R-OOGD as the expert algorithm, achieves the same dynamic
regret bound of O(

√
(1 + VT + PT )(1 + PT )) while utilizing half of the gradient information.
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2.2 Optimistic algorithm in zero-sum games

ODGA in Euclidean zero-sum games The Extragradient (EG) and Optimistic Gra-
dient Descent Ascent (OGDA) methods have been extensively researched in the field of
finding Nash equilibrium of Euclidean zero-sum games since the work of Korpelevich (1976).
In the unconstrained convex-concave setting, both the EG and the OGDA methods exhib-
ited O(1/T ) average convergence rates, e.g., (e.g., Mokhtari et al., 2020b). Chavdarova et al.
(2021) and Gorbunov et al. (2022) proved O(1/

√
T ) best-iterate convergence rates. In the

constrained convex-concave setting, a more recent study by Cai et al. (2022) demonstrated
an O(1/

√
T ) last-iterate convergence rate of the OGDA. For the strongly convex-strongly

concave setting, Mokhtari et al. (2020a) demonstrated linear last-iterate convergence for
both the OGDA and EG methods. Furthermore, Wei et al. (2021); Gorbunov et al. (2022)
extended this linear convergence rate to the constrained setting. In this paper, we propose
a Riemannian extension of the OGDA method which preserves the average iterate and best-
iterate convergence rate for g-convex-concave games, and linear last-iterate for g-strongly
convex-strongly concave games.

Riemannian zero-sum games Algorithms for coomputing the Nash equilibria (NE)
in Riemannian zero-sum (RZS) games on Riemannian manifolds have been developed in
the work of Li et al. (2009); Wang et al. (2010); Ferreira et al. (2005). Huang and Gao
(2023) introduced a Riemannian gradient descent ascent algorithm for RZS games where the
second variable y lied in a Euclidean space. Zhang et al. (2022) presented the Riemannian
Corrected Extragradient algorithm (RCEG), which computes two gradients in one iteration
and achieves O( 1

T ) average-iteration convergence. Furthermore, for non-smooth functions,
Jordan et al. (2022) presented O( 1

T ) average-iterate convergence in the g-convex-concave
setting and linear last-iterate convergence in the g-strongly-convex strongly-concave setting
using Riemannian gradient descent ascent. Jordan et al. (2022) also constructed linear
last-iterate convergence of the RCEG in the strongly g-convex setting. Han et al. (2022)
introduced Riemannian Hamiltonian methods (RHM) that use the second-order Riemannian
Hessian operator and established linear last-iterate convergence when the gradient norm of
the payoff function satisfies the Riemannian Polyak–Łojasiewicz (PL) condition. In contrast,
our ROGDA algorithm uses first-order information only once in each iteration and achieves
the same average-iterate and last-iterate convergence. Moreover, our ROGDA algorithm
shows the first best-iterate convergence result for g-convex-concave setting.

3 Preliminaries

Riemannian geometry A Riemannian manifold (M, g) is a manifold M with a point-
varying Riemannian metric g. The Riemannian metric g induces an inner product ⟨u, v⟩x =
gx(u, v) on every tangent space TxM. Via the inner product, notions of geometry can be
brought onto Riemannian manifolds. For example, the norm of u ∈ TxM is defined as
∥u∥ =

√
⟨u, u⟩x, the angle between u, v ∈ TxM is arccos ⟨u,v⟩x

∥u∥∥v∥ , and the length of a curve

γ : [0, 1] → M is defined as
∫ 1
0 ∥γ̇(t)∥dt.

A Riemannian manifold M also enjoys a metric space structure with distance d(x, y),
which is the minimum of the lengths of the curves connecting x and y. A curve γ is called a
geodesic if it locally reaches the minimum length. An exponential map expx acts as a vector
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addition on Riemannian manifolds, which maps a tangent vector v ∈ TxM to the endpoint
γ(1) of a geodesic γ with the initial tangent vector v. Parallel transport Γγ along the curve γ
translates vectors from one tangent space to another while preserving the inner product, i.e.,
⟨u, v⟩ = ⟨Γγu,Γγv⟩. In particular, we denote Γy

x as the parallel transport along the geodesic
between x and y. The parallel transport determines the covariant derivative of the vector
field X along the vector field Y , which is defined as ∇XY (x) = limt→0

1
t

(
ΓγX(γ(t))−X(x)

)
,

where γ̇(0) = Y (x).
One of the most important notions in Riemannian geometry is the curvature tensor,

defined as R(X,Y,W,Z) := ⟨∇X∇Y Z−∇Y ∇XZ−∇[X,Y ]Z,W ⟩. The sectional curvature is
defined as R(X,Y,X,Y )

|X|2|Y |2−⟨X,Y ⟩2 and characterizes the non-flatness of a 2-dimensional Riemannian
submanifold. On manifolds with non-positive sectional curvature, geodesics at one point x
spread away from each other so that the inverse exponential map exp−1

x can be defined glob-
ally, while on manifolds with positive sectional curvature K, geodesics at one point gather
with each other, making the inverse exponential map well-defined only in a neighborhood
of x with diameter less than π√

K
. On the domain where the inverse exponential map is

well-defined, we can write the distance function as d(x, y) = ∥ exp−1
x y∥.

Function classes We introduce some function classes on Riemannian manifolds for the
further analysis. First, we introduce the concept of geodesic convexity on Riemannian
manifolds. A function f is considered to be geodesically convex (or g-convex) on K, if for
any x and y belonging to K, it satisfies

f(y) ≥ f(x) + ⟨∇f(x), exp−1
x y⟩.

A function f is said to be µ-strongly geodesically convex (or µ-strongly g-convex) on K, if
for any x and y belonging to the manifold M, the following inequality holds

f(y) ≥ f(x) + ⟨∇f(x), exp−1
x y⟩+ µ

2
d2(x, y).

Strong g-convexity also implies that

⟨−∇f(x), exp−1
x x∗⟩ ≥ µ

2
d2(x, x∗), ∀x ∈ M,

where x∗ is the global minimizer. Furthermore, a function f : K → R is called geodesi-
cally concave (g-concave) if −f is g-convex and a function f : M → R is called µ-strongly
geodesically concave (µ-strongly g-concave) if −f is µ-strongly g-convex.

We now define Lipschitz functions and smooth functions on Riemannian manifolds. We
define a function f : M → R as geodesically G-Lipschitz (or g-G-Lipschitz) if there exists
a constant G > 0 such that, for any x, x′ ∈ M, the inequality |f(x) − f(x′)| ≤ G · d(x, x′)
holds. In the case of differentiable functions, this condition is equivalent to ∥∇f(x)∥ ≤ G
for all x ∈ M. Similarly, a function f : M → R is referred to as geodesically L-smooth if the
gradient of f satisfies the g-L-Lipschitz property, meaning that for any x, x′ ∈ M, we have
∥∇f(x)− Γx

x′∇f(x′)∥ ≤ L · d(x, x′).
We now shift our focus to bivariate functions within the context of Riemannian zero-sum

games. We call a bivariate function f(x, y) : M×N → R g-convex-concave (or µ-g-strongly
convex-strongly concave), if for every (x, y) ∈ M × N , f(·, y) : M → R is g-convex (or
µ-strongly g-convex) and f(x, ·) : N → R is g-concave (or µ-strongly g-concave).
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4 Riemannian Online Optimization with Dynamic Regret

In this section, we first introduce the Riemannian online optimistic gradient descent algo-
rithm (R-OOGD) and the Riemannian adaptive online optimistic gradient descent algorithm
(R-AOOGD), which aims to improve the dynamic regret bound by averaging N R-OOGD
algorithms with different step sizes. Then, we analyze the dynamic regret bounds of the
R-OOGD and the R-AOOGD under g-convex functions.

4.1 Riemannian Online Optimistic Gradient Descent Method

The proposed R-OOGD algorithm is described in Algorithm 1. At each iteration t, the
algorithm collects the gradient ∇ft(xt) and combines it with additional momentum

∇ft(xt)− Γxt
xt−1∇ft−1(xt−1).

This combined gradient is then used in a gradient descent step via the exponential map
expxt

. The R-OOGD algorithm extends the Euclidean optimistic framework (Mokhtari
et al., 2020a) to Riemannian manifolds.

Algorithm 1 Riemannian Optimistic Gradient Descent Algorithm (R-OOGD)
Require: Manifold M, step size η

Initialize x−1 = x0 = x1 ∈ M.
for t = 1 to T − 1 do

Play xt and receive ∇ft(xt).
Update xt+1 = expxt

(−2η∇ft(xt) + ηΓxt
xt−1

∇ft−1(xt−1))
end for

Ensure: Sequence (xt)
T
t=1.

Next, inspired by Hu et al. (2023), we introduce a meta-expert framework to the R-
OOGD. We propose the Riemannian adaptive online optimistic gradient descent algorithm
(R-AOOGD) in Algorithms 2 and 3.

4.2 Dynamic Regret Analysis

In order to analyze the regret bounds of the R-OOGD and the R-AOOGD, we impose
some assumptions, which are standard in the literature of online learning and Riemannian
optimization (Antonakopoulos et al., 2020; Mokhtari et al., 2020b,a; Ahn and Sra, 2020;
Alimisis et al., 2021).

Assumption 1. The function ft is g-convex, g-G-Lipschitz, and g-L-smooth over the set
K ⊂ M.

The following two assumptions focus on the geometry of the manifolds M.

Assumption 2. All sectional curvatures of M are bounded below by a constant κ and
bounded above by a constant K.

Assumption 3. The diameter of the feasible set K is bounded by D0. If K > 0, the diameter
D0 is less than π

2
√
K

.

9
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Algorithm 2 R-AOOGD: Meta Algorithm
Require: Manifold M, learning rate β, step size pool H = ηi; i = 1, 2, . . . , N and parame-

ters K,α.
1: Initialize x0 ∈ M. Set initial weights w0,1 = w0,2 = · · · = w0,N = 1/N .
2: for t = 1 to T do
3: Receive xi,t from N expert algorithms with step size ηi.
4: Set x̄t = argminxwt−1,id

2(x, xt,i)

5: Update wt,i ∝ e

(
−β(

∑t−1
j=1 li,j+mi,t)

)
by{

li,t = ⟨∇ft(xt), exp
−1
xt

xi,t⟩
mi,t = ⟨∇ft(x̄t), exp

−1
x̄t

xi,t⟩

6: Set xt = argminxwt,id
2(x, xt,i).

7: end for
8: return {xt}Tt=1.

Algorithm 3 R-AOOGD: Expert Algorithm
Require: Manifold M, feasible set K and step size ηi from the pool H.

Initialize xi,−1 = xi,0 = xi,1 ∈ K.
for t = 1 to T − 1 do

Send xi,t to the meta algorithm.
Update xi,t+1 = expxi,t

(−2ηi∇ft(xi,t) + ηiΓ
xi,t

xi,t−1∇ft−1(xi,t−1)).
end for

Assuming boundedness of the feasible set is a fundamental setting in online optimization
algorithms (Zinkevich, 2003; Abernethy et al., 2008; Zhao et al., 2020), while the additional
constraint D0 ≤ π

2
√
K

is also a common condition adopted in the literature of Riemannian
optimization on positively curved manifolds (Zhang and Sra, 2016; Alimisis et al., 2021;
Zhang et al., 2022). Assumption 3 ensures that there are no conjugate points on K according
to the conjugate point theorem (Lee, 2018), guaranteeing that the inverse exponential map
exp−1

x (·) can be defined throughout K. Additionally, the Hessian comparison theorem (Lee,
2018) indicates that when the diameter of K is greater than π√

K
, the subset K may be

“infinitely curved,” meaning that the Hessian of the distance function d(x, ·) may blow up.
As in Riemannian optimization, we usually bound the loss by the g-convexity, i.e.,

ft(xt)− ft(ut) ≤ ⟨∇−ft(xt), exp
−1
xt

ut⟩ = ⟨∇ft(xt),∇xt(
1

2
d2(xt, ut))⟩,

and then use the Hessian of the distance function d(x, ut) for further analysis.
We also note that Assumption 3 does not necessarily affect the applicability of the pro-

posed algorithms in practical problems. Our experiments (see Subsection 6.2) demonstrate
that a feasible set K with a much larger diameter than π

2
√
K

(even the whole manifold M)
does not significantly affect the performance of our proposed algorithms.

We impose the following assumption on invariance of the set K during the execution
of Algorithm 1. The same assumption has also been used in the work by Ahn and Sra

10
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(2020); Alimisis et al. (2021); Zhang et al. (2022). In addition, and we do not observe the
assumption to be violated in our experiments.

Assumption 4. All iterations of Algorithms 1 lie in the set K.

Now we begin to analyze regret bounds. Our analysis heavily relies on comparison
inequalities (Zhang and Sra, 2016; Alimisis et al., 2021), which enable us to quantify the
distortion by nonlinear structure with respect to the curvature bound κ, K and domain
diameter D0. Specially, we can bound the minimum and maximum distortion rates by two
parameters

σ(K,D) =

{ √
KD

tan(
√
KD)

K > 0;

1 K ≤ 0,
and ζ(κ,D) =

{ √
−κD

tanh(
√
−κD)

κ < 0;

1 κ ≥ 0.

After that, we can establish regret bounds for the R-OOGD algorithm.

4.2.1 Dynamic Regret for R-OOGD

Theorem 1. Let σ0 = σ(K,D0) and ζ0 = ζ(κ,D0). Suppose that Assumptions 1-4 hold.
Then, for the sequence {xt}Tt=1 generated by Algorithm 1 with step size η ≤ σ0

4ζ0L
, the following

inequality holds for an arbitrary sequence {ut}Tt=1:

RegD(u1, . . . , uT ) ≤
D2

0 + 2D0PT

η
+ η

4ζ20
σ0

(G2 + VT ),

where PT =
∑T

t=2 d(ut, ut−1) is the path-length, and VT =
∑T

t=2 supx∈K ∥∇ft(x)−∇ft−1(x)∥2
is the gradient variation. If VT is known beforehand, the dynamic regret bound can be im-
proved to O(PT

√
1 + VT ).

Corollary 2. Suppose that Assumptions 1-4 hold. Algorithm 1 incurs the static regret with

the optimal step size η∗ = min(

√
D2

0σ0

4ζ20 (G
2+VT )

, σ0
4ζ0L

),

RegS(T ) ≤ O
(
ζ0

√
1

σ0
(1 + VT )

)
.

The proofs of Theorem 1 and Corollary 2 are shown in Appendix B. In Theorem 1 and
Corollary 2, we provide an O(PT

√
1 + VT ) dynamic regret bound and an O(

√
1 + VT ) static

regret bound for the R-OOGD, respectively. These bounds recover the corresponding work
on online optimization in Euclidean space (Jadbabaie et al., 2015; Zhang et al., 2018; Zhao
et al., 2020). Compared to the extragradient-structured R-OCEG algorithm by Hu et al.
(2023) in the unconstrained setting, our method only requires one gradient information per
iteration, making it less computationally demanding and more applicable to the one-point
gradient feedback online learning model.

4.2.2 R-OOGD with Parallel Transport

Conversion of past gradients plays a vital role in designing Riemannian optimistic algo-
rithms. Apart from the parallel transport method utilized in our R-OOGD algorithm, there
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is another methodology known as the correction term to transport past graident in Rie-
mannian optimization (Zhang et al., 2022; Hu et al., 2023). The correction term involves
changing the base point of the exponential map to avoid parallel transport. Specifically,
when considering two points a and b, along with a tangent vector v ∈ TaM, the correction
term employs expa(v + exp−1

a (b)) instead of the direct parallel transport expb(Γ
b
av). If our

R-OOGD algorithm incorporates the correction term methodology, the algorithm will be
expressed as follows, {

xt+1 = expxt
(−2η∇ft(xt) + exp−1

xt
x̂t)

x̂t+1 = expxt
(−η∇ft(xt) + exp−1

xt
x̂t).

(2)

However, incorporating the correction term into our R-OOGD algorithm does not yield
an efficient online algorithm and is unable to guarantee a sublinear static regret. This is
because the correction term introduces distortion in the inner product, and these distortions
grow unboundedly over time. To be more precise, in order to analyze the static regret bound,
we need to estimate the distortion in the inner product between the correction term and the
real gradient term

At := ⟨exp−1
xt

x̂t − Γxt
xt−1

η∇ft−1(xt−1), exp
−1
xt

x⟩

at each iteration. However, as demonstrated in Appendix C, the distortion bound At depends
on the previous distortion At−1, which is governed by the recursive formula:

At ≤ O
(
(5ηG+ 2At−1)

2(3ηG+At−1)
)
. (3)

Therefore, the distortion accumulates iteratively and may eventually blow up. In con-
trast, our parallel transport method preserves the inner product, guaranteeing that the
distortion term remains zero. Consequently, it is crucial to emphasize that parallel trans-
porting past gradients is essential to ensure the effectiveness of the R-OOGD algorithm.

4.2.3 Dynamic Regret for R-AOOGD

Now we begin to analyze the the dynamic bound of the R-AOOGD algorithm.

Theorem 3. Suppose that Assumptions 1-4 hold. Set H = {ηi = 2i−1

√
σ0D2

0

16ζ20G
2T

}, β =

min
(

1√
12D4

0L
2+D2

0G
2ζ20

,
√

2+lnN
3D2

0(VT+G2)

)
and N =

⌈
1
2 log2

(
σ0G2T
D2

0L
2

)⌉
+ 1. The R-AOOGD al-

gorithm (Algorithms 2 and 3) incurs the dynamic regret

RegD(u1, . . . , uT ) ≤ O
( ζ0√

σ0

√
(1 + VT + PT )(1 + PT )

)
.

The proof of Theorem 3 can be found in Appendix B. In Theorem 3, we establish
an O

(√
(1 + VT + PT )(1 + PT )

)
regret bound for our meta-expert algorithm R-AOOGD

which aligns with the findings in online optimization in Euclidean space (Zhao et al., 2020).
When considering the RADRv algorithm (Hu et al., 2023), which is another Riemannian
online meta-expert algorithm, we observe certain differences compared to our R-AOOGD
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algorithm. In the non-projection case, the RADRv algorithm at the meta level requires
N =

⌈
1
2 log2

(
4σ0G2T
D2

0L
2

)⌉
+ 1 expert algorithms, which is equal to or more than the number

of experts required by our R-AOOGD algorithm. Additionally, at the expert level, the
RADRv requires two gradients per iteration, while our R-AOOGD algorithm only requires
one gradient. As a result, our R-AOOGD algorithm achieves the same order of regret bound
of O

(√
(1 + VT + PT )(1 + PT )

)
while utilizing only half the number of gradients.

5 Application: Nash Equilibrium Seeking in Riemannian Zero-sum
Games

In this section, we apply our R-OOGD to Riemannian zero-sum (RZS) games, where both
players update their actions based on the R-OOGD dynamics. We then analyze the con-
vergence rates of the resulting Riemannian Optimistic Gradient Descent Ascent method
(R-OGDA). Specifically, we study the average-iterate convergence rate and the best-iterate
convergence rate for g-convex-concave games, as well as the last-iterate convergence rate for
g-strongly convex-strongly concave games.

5.1 Formulation of Riemannian Zero-sum Games

Riemannian zero-sum (RZS) games involve a competitive scenario between two players,
denoted as X and Y, i.e.,

min
x∈M

max
y∈N

f(x, y), (4)

where player-X tries to find a strategy x from a Riemannian manifold M to minimize the
payoff function f(x, y), while player-Y tries find a strategy y from a Riemannian manifold
N to maximize the payoff function f(x, y).

A key concept in the RZS games is Nash Equilibrium (NE). In the RZS game, an action
pair (x∗, y∗) ∈ M×N is an NE if no player can improve individual payoff by only deviating
his own action, i.e.,

max
y∈N

f(x∗, y) = f(x∗, y∗) = min
x∈M

f(x, y∗).

Computing NEs in the Riemannian zero-sum games has direct applications in several learn-
ing tasks including minimum balanced cut, robust geometry-aware PCA, and robust Wasser-
stein barycenters (Khuzani and Li, 2017; Horev et al., 2016; Lin et al., 2020; Zhang et al.,
2022).

5.2 Riemannian Optimistic Gradient Descent Ascent Algorithm

We propose the Riemannian Optimistic Gradient Descent Ascent Algorithm (R-OGDA) as
follows.
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Algorithm 4 Riemannian Optimistic Gradient Descent Ascent
Require: (M,N ), step size η,

Initialize (x−1, y−1) = (x0, y0) ∈ M×N .
for t = 2 to T − 1 do

Update xt+1 = expxt
(−2η∇xf(xt, yt) + ηΓxt

xt−1
∇xf(xt−1, yt−1))

Update yt+1 = expyt(2η∇yf(xt, yt)− ηΓyt
yt−1∇yf(xt−1, yt−1))

Average from geodesic {
x̄t+1 = expx̄t

( 1
(t+1) exp

−1
x̄t

xt+1)

ȳt+1 = expȳt(
1

(t+1) exp
−1
ȳt yt+1)

(5)

end for
Ensure: Sequence (xt, yt)

T
t=1, average (x̄T , ȳT ) .

5.3 Average-Iterate Analysis

We first analyze the convergence rate of averaged iterate (x̄T , ȳT ) by adpoting the following
assumptions. To ease the notation, we denote zt = (xt, yt), z∗ = (x∗, y∗), and F(zt) =
[∇xf(zt),−∇yf(zt)].

Assumption 5. The payoff function f is g-G-Lipschitz and g-convex-concave on the man-
ifold M×N .

The g-convexity-concavity is helpful in analyzing Nash equilibriums. For any NE point
z∗ = (x∗, y∗), the g-convexity-concavity of f implies that

⟨−F(z), exp−1
z z∗⟩ ≥ 0

holds for all z ∈ M. Moreover, if f is µ-g-strongly-convex strongly-concave, it further holds
that for all z ∈ M,

⟨−F(z), exp−1
z z∗⟩ ≥ µ

2
d2(z, z∗). (6)

Assumption 6. The payoff function f is g-L-smooth on M×N , i.e., there is a constant
L > 0 such that

∥∇f(x, y)− Γ
(x,y)
(x′,y′)∇f(x′, y′)∥2 ≤ L2(d2(x, x′) + d2(y, y′)), ∀(x, y), (x′, y′) ∈ M×N .

Assumption 7. There is a Nash equilibrium z∗ = (x∗, y∗) in the Riemannian zero-sum
game (4).

Assumption 7 can be directly derived from the g-strongly convex-strongly concave prop-
erty of f in certain cases. In the case where the manifold M is compact or the level set
{(x, y) | −∞ ≤ f(x, y) ≤ ∞} is bounded, we can rely on the Riemannian analog of Sion’s
minimax theorem (Zhang et al., 2022) to establish the existence of a Nash equilibrium.
Furthermore, if we assume g-strong-convexity strong-concavity of the function f , by (6),
Assumption 7 guarantees the uniqueness of the resulting Nash equilibrium z∗.
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Assumption 8. All sectional curvatures of M and N are bounded below by a constant κ
and bounded above by a constant K.

We first show that it is possible to drop the boundedness assumption (Assumption 3) in
the iteration of xt and yt in the Riemannian zero-sum (RZS) games (4), if prior knowledge
of the distance d(z0, z

∗) is available. The following Lemma 4 ensures that the iteration of
xt and yt is in a bounded set K.

Lemma 4. Suppose Assumptions 5-8 hold. Let the step size η satisfying η ≤ min( σ1
ζ1L

, D1
3G ).

Let d(z0, z
∗) ≤ D1 < π

6
√
K

, then by denoting ζ1 = ζ(κ, 3D1) and σ1 = ζ(K, 3D1), we have
d(zt, z

∗) ≤ 2D1 for all iterations t.

Then we derive the average-iterate convergence rate for g-convex-concave RZS games in
the following Theorem 5.

Theorem 5. Under Assumptions 5-8 and the condition in Lemma 4, the averaged iterate
(x̄T , ȳT ) of Algorithm 4 with the step size η ≤ σ1

2ζ1L
satisfies:

max
y∈N

f(x̄T , y)− min
x∈M

f(x, ȳT ) ≤
D2

1L+
D2

1
2η

T

The proof of Theorem 5 is in Appendix D. Theorem 5 demonstrates that the averaged
iterate (x̄T , ȳT ) is an O( 1

T )-NE in g-convex-concave RZS games. The result extends the cor-
responding results in Euclidean spaces (Mokhtari et al., 2020a) and recovers the convergence
rate of RCEG (Zhang et al., 2022) by acquiring only one gradient in each iteration.

5.4 Last-Iterate/Best-Iterate Analysis

In this section, we focus on the last/best-iterate convergence of our R-OGDA algorithm.
Dealing with the convergence of the R-OGDA algorithm in terms of the last-iterate or
best-iterate is quite challenging. In Euclidean spaces, optimistic gradient descent/ascent
algorithms benefit from the perspective of “extrapolation from the past” (Gidel et al., 2019).
This means that by defining the immediate sequence

ẑEt+1 = zt − η(F(zt) + F(zt−1)), (*)

the relationship holds Gidel et al. (2019):

ηF(zt) = ẑEt − ẑEt+1. (**)

However, when we define the Riemannian counterparts of (*) ẑt+1 = expzt(η(−F(zt) +

F(zt−1))), it fails to hold that exp−1
ẑt+1

ẑt = ηΓ
ẑt+1
zt F(zt), which is the Riemannian version

of (**). In addition, measuring the distortion between vector exp−1
ẑt+1

ẑt and ηΓ
ẑt+1
zt F(zt) is

challenging.
One natural idea is to parallel transport the tangent vectors exp−1

zt zt−1, exp−1
zt ẑt and

exp−1
zt+1

ẑt+1 to the tangent space at ẑt+1, and then estimate the distortion between Gt and
Γẑt+1
zt F(zt) using their vector sum. A commonly used technique in manifold settings, the

15



Wang, Yuan, Hong, Hu, Wang and Shi

comparison inequalities (Zhang and Sra, 2016; Alimisis et al., 2021), follows the same idea
to estimate the Hessian-type distortion, i.e.,

σ(K,D)∥ exp−1
a b∥ ≤ ∥ exp−1

a b− Γa
c exp

−1
c b∥ ≤ ζ(k,D)∥ exp−1

a b∥.

The crux of these inequalities is to use the gradient squared distance ∇d(b, x) = − exp−1
b x

on the manifold, and then estimate the error by exploiting the eigenvalues of the Hessian
matrix of the distance function. Therefore, the comparison inequalities require the compared
tangent vectors to share the same endpoint, which is not applicable in our case.

Furthermore, we have observed that the distortion analysis between Gt and Γẑt+1
zt F(zt)

brings in extra errors beyond the Hessian-type distortions. Parallel transporting vectors in
the two distinct tangent spaces to a third tangent space can lead to additional distortion.
Specifically, when dealing with three points a, b, c, and vectors v ∈ TaM and w ∈ TbM, we
have

∥Γc
av − Γc

bw∥ ≠ ∥Γb
av − w∥.

In particular, it holds

∥Γc
av − Γc

bw∥ = ∥Γb
av − w∥+ ∥Γa

bΓ
b
cΓ

c
av − w∥.

On Riemannian manifolds, the latter term ∥Γa
bΓ

b
cΓ

c
av−w∥ does not vanish due to the presence

of the holonomy effects, which indicates that parallel transport around closed loops fails to
preserve the geometric data being transported. Therefore, estimating the distortion between
Gt and Γẑt+1

zt F(zt) is faced with the change of holonomy distortion and becomes highly
nontrivial.

To address the aforementioned difficulties, we propose a key technique inspired by the
famous Gauss-Bonnet theorem (Chern et al., 1999), and estimate the holonomy distortion
by the step size η and sectional curvature Km = max{|K|, |κ|}.

Lemma 6. Suppose that f is g-L-smooth. If the step size η ≤ 1
20L , them Gt+1 = exp−1

ẑt+1
ẑt

satisfies the following

(i) ∥Gt+1∥2 − ∥ηF(zt)∥2 ≤ 64K2
mη6∥F(zt−1)∥6;

(ii) ∥Γzt
ẑt+1

Gt+1 − ηF(zt)∥ ≤ 104Kmη3∥F(zt−1)∥3.

According to Lemma 6, the holonomy distortion turns out to be O(Kmη3), which enables
us to obtain the convergence in Theorems 7 and 8. In the following theorems, we denote
Υ = 1

5σ1L+ 28
5 (ζ1 − σ1)L+ 104(2D1 +

1
5)KmG+ 8σ1KmG.

Theorem 7. Suppose Assumptions 5-8 and conditions in Lemma 4 hold. With the step size
η ≤ min{ 1

20L ,
1
8G ,

σ1
2Υ}. Algorithm 4 incurs the best-iterate convergence,

min
t≤T

∥∇f(zt)∥ ≤ O(
1√
T
),

and moreover, we have limt→∞ ∥∇f(zt)∥ = 0.
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Theorem 8. Suppose Assumptions 5-8 and conditions in Lemma 4 hold and f is µ-g-strongly
convex-strongly concave. Recall z∗ is the unique NE of the game (4). Algorithm 4 with the
step size η ≤ min{ 1

20L ,
1
8G ,

σ1
Υ+4µ+8σ1µ

} incurs

d2(zt, z
∗) ≤

( 1

1 + ηµ/2

)t(
2(1 +

1

σ1
)d2(z1, z

∗)
)
.

The proofs for Theorems 7 and 8 can be found in Appendix F. Theorem 7 demonstrates
the O( 1√

T
) convergence rate for the best iterate of g-convex-concave games, which is the first

proven result in Riemannian NE seeking algorithms for g-convex-concave games. Moreover,
Theorem 8 establishes a linear convergence rate for the last-iterate of the ROGDA algorithm,
matching those in the RCEG algorithm and the second-order RHM algorithm (Han et al.,
2022; Jordan et al., 2022) in the g-strongly convex-strongly concave setting, while requiring
only one first-order information in each iteration.

6 Numerical Experiments

In this section, we presents several numerical experiments to validate our theoretical find-
ings regarding Riemannian online optimization problems and Riemannian zero-sum games.
We conduct experiments on both synthetic and real-world datasets, and compare the per-
formance of our proposed algorithm with state-of-the-art methods in the literature. We
implement our algorithm using the Pymanopt package Boumal et al. (2014) and conduct all
experiments in Python 3.8 on a machine with an AMD Ryzen5 processor clocked at 3.4 GHz
and 16GB RAM. To ensure reproducibility of our results, we provide access to all source
codes online1.

6.1 Online Fréchet Mean in the Hyperbolic Space

The Fréchet mean problem, also known as finding the Riemannian centroid of a set of
points on a manifold, has numerous applications in various fields, including diffusion tensor
magnetic resonance imaging (DT-MRI) (Cheng et al., 2012) and hyperbolic neural network
(Liu et al., 2019). We focus on the online version of the Fréchet mean problem, which aims
to compute the average of N time-variant points in a hyperbolic space. Hyperbolic space is
a Riemannian manifold with constant negative sectional curvature -1, defined as

Hn = {x ∈ Rn+1|⟨x, x⟩M = −1},

where the Minkowski dot product

⟨x, y⟩M =
n∑

i=1

xiyi − xn+1yn+1

defines the metric ⟨x, y⟩p = ⟨x, y⟩M . The loss function ft of the online Fréchet mean problem
is given by

ft(xt) =
1

2N

N∑
i=1

d2(xt, At,i) =
1

2N

N∑
i=1

cosh−1(−⟨xt, At,i⟩M )2,

1. https://github.com/RiemannianOCO/DynamicReg
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where {At,1, At,2, . . . , At,N} are the time-variant points in the hyperbolic space.

Experimental setting We test the online Fréchet mean on synthetic datasets generated
as follows: In each iteration t, we randomly sample the point Ai,t from a ball centered at
a point Pt with a radius of c = 1. The choice of Pt is in following two ways to simulate
non-stationary environments. 1) Pt remains fixed in between S time steps. After every S
rounds, we re-select Pt randomly within a bounded set of diameter D = 1 to simulate abrupt
changes in the environment. 2) Pt shifts a small distance of 0.1 between each time step, and
is re-selected after S round, to simulate a slowly evolving environment. For our experiment,
we set T = 10000, n = 100, d = 20, D = 1, κ = 1, and L = ζ(κ,D).

In addition, we compare our R-OOGD and R-AOOGD algorithms to other contenders in
Riemannian online optimization. Specifically, we compare R-OOGD with the Riemannian
online gradient descent (ROGD) algorithm (Wang et al., 2023) and the EG-type expert
algorithm R-OCEG (Hu et al., 2023). We also compare our meta-expert algorithm R-
AOOGD with the meta-expert RADRv algorithm (Hu et al., 2023).

Result We examine the performance in terms of cumulative loss and present the result
in Fig 6.1. First, we can see that OGD suffers from a high cumulative loss throughout the
horizon. Conversely, our methods, as well as R-OCEG and RADRv, demonstrate satisfac-
tory performance in terms of dynamic regret in both situations. As meta-expert algorithms,
our R-AOOGD slightly outperforms the RARDv. Our R-OOGD algorithm performs com-
parably to RARDv-exp, but with only half number of the gradient information required.
These facts validate the effectiveness of our algorithms and demonstrate our advantage in
situations where gradient computation is time-consuming.
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(a) Stationary environment with abrupt changes
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(b) Slowly evolving environment

Figure 1: Algorithm performance on hyperbolic Fréchet mean problems
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6.2 Online Geodesic Regression

Geodesic Regression is a statistical model that generalizes the Euclidean least-square regres-
sion by modeling data as

y = expŷt(ϵ), ŷt = expp(xV ),

where x ∈ R is the feature, y ∈ M is the manifold-valued label, V is a tangent vector at P ,
and ϵ is a Gaussian-distributed error. Geodesic Regression has many applications in medical
imaging, object recognition, and linear system identification (Yang and Hospedales, 2016;
Shin and Oh, 2022; Hong et al., 2014).

We can also consider an online form of geodesic regression, where the model is trained
sequentially. For each data point xt, yt, the online geodesic regression model minimizes the
loss function

ft(pt, Vt) =
1

2
d2(ŷt, yt) =

1

2
d2(exppt(xtVt), yt),

where (pt, Vt) ∈ TM lies in the tangent bundle TM with the Sasaki metric (Muralidharan
and Fletcher, 2012), 〈

(p′1, V
′
1), (p

′
2, V

′
2)
〉
= ⟨p′1, p′2⟩M + ⟨V ′

1 , V
′
2⟩TPM.

Experimental setting We now conduct our experiments on both synthetic and real-world
dataset. The synthetic dataset is generated on a five-dimensional sphere S5. At each round,
the feature xt is uniformly sampled from [0, 1], and the label yt is obtained as yt = expŷt(ϵt),
where ŷt = exppt(xtVt) and ϵt is a random tangent vector with norm chosen uniformly from
[0, 0.1]. Similar to the previous experiment, we fix pt and Vt for S rounds and randomly
select new pt and Vt from the half sphere after every S rounds.

The real-world dataset used in this experiment is the corpus callosum dataset from the
Alzheimer’s disease neuroimaging initiative, which was provided by Cornea et al. (2017)
and can also be accessed online 2. The dataset includes information about 408 subjecst as
well as shape of the subjects’ corpus callosum obtained from mid-sagittal slices of magnetic
resonance images (MRI). The shape of an corpus callosum is described as a cloud point
matrix yt ∈ R50×2. During the experiment, we aimed to analyze the relationship between
the age of the subjects and the shape of the corpus callosum by utilizing geodesic regression.
To achieve this, we preprocessed the shape information into a Grassmann manifold Gr(50, 2)
by computing the left-singular vectors of each yt as reported in a previous study by Hong
et al. (2014). Then, we divided the 320 data points into a training set and others to a testing
set. Additionally, we duplicated training data points 5 times for efficient learning rounds.

Results Figure 6.2 shows the accuracy and loss versus learning round for our algorithm.
Additionally, we provide performance results on the test set of the corpus callosum shapes
in Figure 6.2, which confirms the effectiveness of our R-OOGD algorithm and R-AOOGD
algorithm in solving real-world problems. Our algorithm performs similarly or better than
other state-of-the-art methods on both synthetic and real-world datasets, while requiring
fewer gradient information. This finding aligns with our theoretical results.

2. http://www.bios.unc.edu/research/bias/software.html

19

http://www.bios.unc.edu/research/bias/software.html


Wang, Yuan, Hong, Hu, Wang and Shi

It is noteworthy that we did not impose any special requirements on the boundedness
of the training set in the real-world dataset. Therefore, our algorithm iterates over the
entire Grassmann manifold with a diameter of

√
2
2 π > π

2
√
K

= π
2
√
2
. This demonstrates the

applicability of our algorithm when the diameter D ≥ π
2
√
K

.

0 2000 4000 6000 8000 10000
Learning Rounds

0

50

100

150

200

250

300

Ac
cu
. L
os
s

R-AOOGD
R-OCEG
RADRv
R-OGD
R-OOGD

(a) Synthetic data

0 200 400 600 800 1000 1200 1400 1600
Learning Rounds

0

5

10

15

20

25

Ac
cu
. L
os
s

R-AOOGD
R-OCEG
RADRv
R-OGD
R-OOGD

(b) Real-world data

Figure 2: Algorithm performance on geodesic regression

6.3 Quadratic Geodesic Lodget Game

We now validate our theoretical finding in Riemannian zero-sum games. Consider the fol-
lowing toy-example RZS game

min
X∈S++

d

max
Y ∈S++

d

c1(log det(X))2 + c2 log det(X) log det(Y )− c1(log det(Y ))2, (7)

where X and Y take values on the symmetric positive definite (SPD) matrix manifold

S++
d := {X ∈ Rd×d;XT = X,X ≻ 0}

with affine-invariant metric

⟨U, V ⟩x = tr(X−1UX−1V ).

Since the logdet function is geodesic linear on S++
d (Han et al., 2022), the quadratic game

(7) is g-convex-concave with the g-strong convexity coefficient c1. The NEs of the game (7)
are (X∗, Y ∗) where det(X∗) = det(Y ∗) = 1.

Experimental setting We test the R-OGDA in the case when d = 30, c2 = 1, and
c1 ∈ {0, 0.1, 1}. We check the R-OGDA with the step size η = 0.5 for c1 ∈ {0, 0.1} and
η = 0.2 for c1 = 1. We also compare our algorithm with the second-order Riemannian
Hamitonian method (RHM) (Han et al., 2022), the Riemannian corrected extragradient
method (RCEG) (Zhang et al., 2022), and the Riemannian gradient descent ascent algorithm
(R-GDA) (Jordan et al., 2022) with the best-tuned step size.
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Figure 3: Algorithm performance on testing set of corpus callosum shapes
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Figure 4: Quadratic geodesic lodget games
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Results We plot the norm of gradient ∥∇f(xt, yt)∥ versus learning round t in Figure 4.
From the results, all the algorithm converge to the NE. Among them, the second-order al-
gorithm RHM performs the best. For first-order algorithms, our R-OGDA algorithm shows
good performance in both g-convex-concave and g-strongly convex-strongly concave scenar-
ios. In comparison, R-GDA performs well in g-strongly convex-strongly concave scenarios
but does not converge in linear cases (i.e., c = 0). Similarly, RCEG shows slower conver-
gence in linear scenarios and gradually improves with increasing g-strong convexity of the
function, showing comparable convergence to our R-OGDA when c = 1.

6.4 Robust Geometry-Aware PCA

Robust geometry-aware principal component analysis (PCA) (Horev et al., 2016) is a di-
mensional reduction tool for SPD matrices. Given a set of SPD matrices {Ai}ni=1, the
geometry-aware PCA aims to find a geometry mean A with the maximal data variance,
which can be formulated as finding the NE in the following RZS game

min
A∈S++

d

max
X∈Sd

XTAX +
α

n

n∑
i

∥ log(A− 1
2

i AA
− 1

2
i )∥F , (8)

where Sd is the d-dimensional unit sphere with the canonical metric ⟨U, V ⟩ = UTV . The
game (8) is g-strongly convex to A, but not g-concave to X. Hence, the game (8) is more
challenging for our R-OGDA algorithm.

Experimental setting We run the experiment with a synthetic dataset {Ai}ni=1 and a
real-world BCI dataset. The synthetic dataset is generated under conditions similar to those
described in prior studies by Zhang et al. (2022) and Han et al. (2022), where the eigenvalues
of Ai are in [0.2, 4.5]. The real-world dataset the BCI competition dataset IV 3 (Schlögl et al.,
2005). The BCI competition dataset IV collected EEG signals from 59 channels electrodes
of 5 subjects who executed left-hand, right-hand, foot and tongue movements. To preprocess
the dataset, we follow the procedure outlined in Horev et al. (2016), which involves selecting
200 trials in the time interval from 0.5s to 2.5s, applying a band-pass filter to remove
frequencies outside the 8–15Hz range and extracting covariant matrix into a 6 × 6 matrix.
For numerical stability, we divide the covariant matrix by 200. For the synthetic dataset,
we set the number of samples n = 40, the dimension d = 50, the regularization parameter
α = 1, and the step size η = 0.07. For the competition BCI dataset IV, we set n = 200,
d = 6, α = 1 and η = 0.05.

Results As shown in Figure 5, on the synthetic datase, the R-OGDA has the fastest
convergence rate. For the real world dataset, R-GDA performs the best and the R-OGDA
outperforms the RHM and RCEG. The performance in the g-convex-nonconcave RZS games
illustrates the potential value of the R-OGDA.

7 Conclusion

In this paper, we have investigated the dynamic regret of Riemannian online optimiza-
tion. We proposed R-OOGD and established a dynamic regret bound of O(PT

√
1 + VT ).

3. https://www.bbci.de/competition/iv/download/
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Figure 5: Robust geometric-aware PCA

Additionally, we introduced R-AOOGD, a meta-expertalgorithm that averages R-OOGD
algorithms with different step sizes, which further improved the dynamic regret bound to
O(

√
(1 + PT + VT )(1 + PT )). We also applied the ROGD algorithm to Riemannian zero-

sum games and achieved convergence rates of O( 1
T ) for average-iterate, O( 1√

T
) for best-

iterate, and O(e−ρt) for last-iterate, for smooth g-convex-concave and g-strongly convex-
strongly concave games. Our results demonstrate the impact of Riemannian geometry on
algorithm performance, and all our regret bounds and convergence rates match the corre-
sponding Euclidean results.

One possible future direction of our work is to consider Riemannian dynamic regret in
the bandit feedback setting, where the learner only receives the function value ft(xt) instead
of the gradient ∇ft(xt). We plan to design Riemannian optimistic bandit algorithms by in-
corporating Riemannian optimization techniques into existing bandit optimization methods.
This will make the resulting algorithms more effective in settings where obtaining gradients
is difficult or even impossible, such as reinforcement learning on Riemannian manifolds.

Acknowledgments and Disclosure of Funding

The authors would like to extend their heartfelt appreciation to Guanpu Chen from the
School of Electrical Engineering and Computer Science at the KTH Royal Institute of
Technology for his insightful discussions on Riemannian zero-sum games. This work is
supported in part by the National Key Research and Development Program of China un-
der No.2022YFA1004700 and Shanghai Municipal Science and Technology Major Project
under No.2021SHZDZX0100, and in part by Australian Research Council under Grants
DP190103615, LP210200473, and DP230101014. Additionally, Xi Wang would like to ac-

23



Wang, Yuan, Hong, Hu, Wang and Shi

knowledge the financial support provided by the China Scholarships Council for visiting
University of Sydney.

24



Riemannian Optimistic Algorithms

Appendix A. Definitions and Technical Lemmas

In the appendix, we introduce some prerequisite about Riemannian geometry for further
analysis. In the rest of the appendix, we denote X (M) as the set of vector fields on the
Riemannian manifold M and C∞(M) as the class of infinitely differentiable functions on
M. A vector field X is equivalent to an operator on C∞(M) via the directional derivative
X(f) := limt→0

1
t (f(γ(t)) − f(t)), where f ∈ C∞(M) and γ is a curve such that γ(0) = p

and γ̇(0) = X(p).
First, we recall some definitions on Riemannian manifolds.

Definition 9 (Lee, 2018). The gradient of a function f at the point x is defined as the
tangent vector ∇f(x) ∈ TxM such that ⟨X(x),∇f(x)⟩ = X(f)(x),∀X ∈ X (M).

Definition 10 (Lee, 2018). The hessian of a function f at the point x is defined as the
bilinear operator ∇2f(x) : TxM× TxM → R such that

∇2f(X(x), Y (x))(x) = ⟨∇X∇f(x), Y (x)⟩,∀X,Y ∈ X (M). (9)

Definition 11 (Lee, 2018). A vector field J along a geodesic γ : [0, 1] → M is a Jacobi field
if it satisfies:

⟨∇γ̇∇γ̇J,W ⟩+R(γ̇, J, γ̇,W ) = 0, ∀W ∈ X (M).

Then we recall some properties of the covariant derivative ∇XY , the curvature tensor
R(X,Y,W,Z) and the Jacobi field.

Lemma 12 (Carmo, 1992). The covariant derivative ∇ : X (M)×X (M) → X (M) satisfies
the following properties:

(i) Z⟨X,Y ⟩ = ⟨∇ZX,Y ⟩+ ⟨X,∇ZY ⟩, ∀X,Y, Z ∈ X (M);

(ii) ∇XY −∇Y X = [X,Y ], where [X,Y ] = XY − Y X is also a vector field on M.

Lemma 13 (Carmo, 1992). If γ : [0, 1] → M is a curve on M and z ∈ Tγ(0)M. If we
extend z to a vector field Z(t) ∈ Tγ(t)M on γ along the parallel transport Γγ(t), then we have
∇γ̇(t)Z(t) = 0, ∀t ∈ [0, 1].

Lemma 14 (Andrews and Hopper, 2010). Denote the curvature tensor

⟨∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,W ⟩ = R(X,Y,W,Z),

then the following statement hold.

(i) R(X,Y,W,Z) is multilinear over C∞(M) i.e.,

R(f1X, f2Y, f3W, f4Z) = f1f2f3f4R(X,Y,W,Z), ∀f1, f2, f3, f4 ∈ C∞(M).
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(ii) The curvature tensor is determined by the its values on 2−dimensional surfaces
K(X,Y ) = R(X,Y,X, Y ), i.e.,

6R(X,Y,W,Z) = K(X +W,Y + Z)−K(X,Y + Z) +K(W,X + Z)

+K(Y +W,X + Z)−K(Y,X + Z) +K(W,X + Z)

−K(X +W,Y ) +K(X,Y ) +K(W,Y )

−K(X +W,Z) +K(X,Z) +K(W,Z)

+K(Y +W,X) +K(Y,X)−K(W,X)

+K(Y +W,Z)−K(Y, Z)−K(W,Z).

Lemma 15 (Jacobi comparison theorem,Lee, 2018). Suppose M is a Riemannian manifold
and γ : [0, b] → M is a geodesic with ∥γ̇(0)∥ = 1. J is a Jacobi field along γ.

(i) If all sectional curvatures of M are upper bounded by a constant K, then denote

S(K, t) =

{
sin(

√
Kt)√
K

K > 0;

t K ≤ 0.

Then,

∥J(γ(t))∥ ≥ S(K, t)∥∇γ̇J(γ(0))∥

for all t ∈ [0, b1], where b1 = b if K ≤ 0 and b1 = min( π√
K
, b) if K ≥ 0.

(ii) If all sectional curvatures of M are lower bounded by a constant κ, then denote

s(κ, t) =

{
sinh(

√
−κt)√

−κ
κ < 0;

t κ ≥ 0.

Then,

∥J(γ(t))∥ ≤ s(κ, t)∥∇γ̇J(γ(0))∥

for all t ∈ [0, b].

Furthermore, we consider two comparison inequalities, which served as the law of consine
over Riemannian manifolds.

Lemma 16 (Zhang and Sra, 2016). Let M be a Riemannian manifold with all sectional
curvatures lower bounded by κ. Denote

ζ(κ,D) =

{ √
−κD

tanh(
√
−κD)

κ < 0;

1 κ ≥ 0.

Then for a geodesic triangle △ABC, we have

2⟨exp−1
A C, exp−1

A B⟩ ≤ d2(A,B) + ζ(κ, d(A,B))d2(A,C)− d2(B,C).
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Lemma 17 (Alimisis et al., 2021). Let M be a Riemannian manifold with all sectional
curvatures upper bounded by K. Denote

σ(K,D) =

{ √
KD

tan(
√
KD)

K > 0;

1 K ≤ 0,
and D(K) =

{
∞ K ≤ 0;

π
2
√
K

K > 0.

If a geodesic triangle △ABC has diameter less than D(K), then we have

2⟨exp−1
A C, exp−1

A B⟩ ≥ d2(A,B) + σ(K, d(A,B))d2(A,C)− d2(B,C).

In addtion, Ahn and Sra (2020) demonstrate bi-Lipschitzness of the exponential map on
positive curved space.

Lemma 18 (Ahn and Sra, 2020). Let A,B,C be points on Riemannian manifold M with
sectional curvatures upper bounded by K ≥ 0. If d(A,C) ≤ π

2
√
K

, then

∥ exp−1
A B − exp−1

A C∥ ≤
√

(1 + 2Kd2(A,B))d(B,C) ≤ 2√
σ(K, d(A,B))

d(B,C).

Finally, we introduce a technique that bounds the metric distortion by parallel transport.

Lemma 19 (Alimisis et al., 2021). Let M be a Riemannian manifold with sectional curva-
ture lower bounded by κ and upper bounded by K. If a geodesic triangle △ABC admits a
diameter less than D(K), then there exists a point p in the edge AC such that

∥ exp−1
A B − ΓA

C exp−1
C B∥ = −ΓA

p

(
∇2(−1

2
d2(C, p))

)
Γp
A exp−1

A C,

where
(
∇2(−1

2d
2(C, p))

)
is the hessian of the function −1

2d
2(C, ·) at point p.

We denote Hc
A,p as the operator −ΓA

p

(
∇2(−1

2d
2(C, p))

)
Γp
A. From the hessian comparison

theorem (Lee, 2018; Alimisis et al., 2020), we know that all the eigenvalues of Hc
A,p are in

the range [σ(K, d(C, p)), ζ(κ, d(C, p))]. Since

max
{
ζ(κ, d(C, p))− 1, 1− σ(K, d(C, p))

}
≤ max(|κ|, |K|)d2(C, p),

we have the following corollary.

Corollary 20. Let M be a Riemannian manifold with sectional curvature lower bounded
by κ and upper bounded by K. If a geodesic triangle △ABC has diameter D ≤ D(K), then
there exists a point p lying in the edge AC such that

(i) ∥ exp−1
A B − ΓA

C exp−1
C B∥ ≤ ζ(κ,D)∥ exp−1

A C∥;

(ii) ∥ exp−1
A B − ΓA

C exp−1
C B − exp−1

A C∥ ≤ d2(C, p)max{|κ|, |K|}∥ exp−1
A C∥.
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Appendix B. Proofs in Section 4

Proof of Theorem 1 To ease the notation, we define vt = supx∈K ∥ft(x)− ft−1(x)∥2 and
∇t = ∇ft(xt). By the g-convexity of ft+1, we have

ft+1(xt+1)− ft+1(ut+1) ≤ ⟨exp−1
xt+1

ut+1,−∇t+1⟩. (10)

Applying Lemma 17 in the geodesic triangle △xt+1ut+1xt we have,

2⟨exp−1
xt+1

ut+1, exp
−1
xt+1

xt ≥ d2(xt+1, ut+1)− d2(xt, ut+1) + σ0d
2(xt+1, xt).

Notice from Algorithm 1, we have xt+1 = expxt
(−2η∇t + ηΓxt

xt−1
∇t−1). This give us

exp−1
xt+1

xt = η(Γxt+1
xt

(2∇t − Γxt
xt−1

∇t−1)).

Thus, we have

0 ≤ ⟨exp−1
xt+1

ut+1,Γ
xt+1
xt

(2∇t − Γxt
xt−1

∇t−1)⟩−
1

2η
(d2(xt+1, ut+1)− d2(xt, ut+1))−

σ0
2η

d2(xt+1, xt). (11)

Combining (10) and (11), we have

ft+1(xt+1)− ft+1(ut+1) ≤ ⟨exp−1
xt+1

ut+1,−∇t+1⟩+ ⟨exp−1
xt+1

ut+1,Γ
xt+1
xt

(2∇t − Γxt
xt−1

∇t−1)⟩

− 1

2η
(d2(xt+1, ut+1)− d2(xt, ut+1))−

σ0
2η

d2(xt+1, xt)

= ⟨exp−1
xt+1

ut+1,−∇t+1 + Γxt+1
xt

∇t⟩
− ⟨exp−1

xt+1
ut+1,Γ

xt+1
xt

(∇t − Γxt
xt−1

∇t−1)⟩

− 1

2η
(d2(xt+1, ut+1)− d2(xt, ut+1))−

σ0
2η

d2(xt+1, xt). (12)

Considering the term −⟨exp−1
xt+1

ut+1,Γ
xt+1
xt (∇t − Γxt

xt−1
∇t−1)⟩ − σ

2ηd
2(xt, xt+1), we have

− ⟨exp−1
xt+1

ut+1,Γ
xt+1
xt

(∇t − Γxt
xt−1

∇t−1)⟩ −
σ

2η
d2(xt, xt+1)

≤ ⟨− exp−1
xt+1

ut+1 + Γxt+1
xt

exp−1
xt

ut+1,Γ
xt+1
xt

(∇t − Γxt
xt−1

∇t−1)⟩
+ ⟨− exp−1

xt
ut+1 + exp−1

xt
ut,∇t − Γxt

xt−1
∇t−1⟩

− ⟨exp−1
xt

ut,∇t − Γxt
xt−1

∇t−1⟩ −
σ0
2η

d2(xt+1, xt). (13)

By Lemma 20, we have

⟨ − exp−1
xt+1

ut+1 + Γxt+1
xt

exp−1
xt

ut+1,Γ
xt+1
xt

(∇t − Γxt
xt−1

∇t−1)⟩
≤ ζ0d(xt+1, xt)∥∇t − Γxt

xt−1
∇t−1∥

≤ ζ20
σ0

η∥∇t − Γxt
xt−1

∇t−1∥2 +
σ0
4η

d2(xt, xt+1). (14)
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The latter inequality is due to the Young’s inequality ⟨a, b⟩ ≤ α∥a∥2
2 + ∥b∥2

2α . Also, By Lemma
18, we have

⟨ − exp−1
xt

ut+1 + exp−1
xt

ut,∇t − Γxt
xt−1

∇t−1⟩

≤ 2√
σ0

d(ut, ut+1)∥∇t − Γxt
xt−1

∇t−1∥

≤ 1

σ0
η∥∇t − Γxt

xt−1
∇t−1∥2 +

d2(ut+1, ut)

η

≤ 1

σ0
η∥∇t − Γxt

xt−1
∇t−1∥2 +

d(ut+1, ut)D

η
. (15)

Since ft is g-L-smooth, we have

∥∇t − Γxt
xt−1

∇t−1∥2 ≤ 2∥∇ft(xt)−∇ft−1(xt)∥2 + 2∥∇ft−1(xt)− Γxt
xt−1

∇t−1∥2

≤ 2vt + 2L2d2(xt, xt−1). (16)

Putting (13)-(16) together, we have

ft+1(xt+1)− ft+1(ut+1) ≤⟨exp−1
xt+1

ut+1,−∇t+1 + Γxt+1
xt

∇t⟩ − ⟨exp−1
xt

ut,−∇t + Γxt
xt−1

∇t−1⟩

+
1

2η
(d2(xt, ut+1)− d2(xt+1, ut+1))

+
2(1 + ζ20 )

σ0
ηvt +

2L2(1 + ζ20 )

σ0
ηd(xt, xt−1)

+
d(ut, ut+1)D

η
− σ0

4η
d2(xt, xt+1). (17)

Summing (17) from t = 0 to T − 1 together, we have

RegD(u1, u2, . . . , uT ) =
T−1∑
t=0

ft+1(xt+1)− ft+1(ut+1)

≤
T−1∑
t=0

⟨exp−1
xt+1

ut+1,−∇t+1 + Γxt+1
xt

∇t⟩

−
T−1∑
t=0

⟨exp−1
xt

ut,−∇t + Γxt
xt−1

∇t−1⟩

+
T−1∑
t=0

1

2η
d2(xt, ut+1)−

T−1∑
t=0

1

2η
d2(xt+1, ut+1)

+
T−1∑
t=0

2L2(1 + ζ20 )

σ0
ηd(xt, xt−1)−

T−1∑
t=0

σ0
4η

d2(xt, xt+1).
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Rearranging the summation, we can obtain

RegD(u1, u2, . . . , uT ) ≤
2(1 + ζ20 )

σ0
ηVT +

DPT

η

≤
T∑
t=1

⟨exp−1
xt

ut,−∇t + Γxt
xt−1

∇t−1⟩ −
T−1∑
t=0

⟨exp−1
xt

ut,−∇t + Γxt
xt−1

∇t−1⟩

+
T−1∑
t=0

1

2η
d2(xt, ut+1)−

T∑
t=1

1

2η
d2(xt, ut)

+

T−1∑
t=0

4L2ζ20
σ0

ηd(xt, xt−1)−
T∑
t=1

σ0
4η

d2(xt, xt−1)

+
4ζ20
σ0

ηVT +
DPT

η
.

Since η ≤ σ0
4ζ0L

, we have 4L2ζ20η
σ0

≤ σ0
4η . Therefore, we have

RegD(u1, u2, . . . , uT ) =
T−1∑
t=0

ft+1(xt+1)− ft+1(ut+1)

≤ ⟨exp−1
xT

uT ,−∇T + ΓxT
xT−1

∇T−1⟩ − ⟨exp−1
x0

u0,−∇0 + Γx0
x−1

∇−1⟩

+
1

2η
d2(x0, u1)−

1

2η
d2(xT , uT )

+
4L2ζ20
σ0

ηd(x0, x−1)−
σ0
4η

d2(xT , xT−1)

+
4ζ20
σ0

ηVT +
2DPT

η
.

As x−1 = x0 = x1, we can see that ∇0 = ∇−1 and d(x0, x−1) = 0. In this way, we can see
that

RegD(u1, u2, . . . , uT ) =
T−1∑
t=0

ft+1(xt+1)− ft+1(ut+1)

≤ ⟨exp−1
xT

uT ,−∇T + ΓxT
xT−1

∇T−1⟩+
1

2η
d2(x0, u1) +

4ζ20
σ0

ηVT +
2DPT

η

≤ 2DG+
D2

2η
+

4ζ20
σ0

ηVT +
2DPT

η

≤ D2 + 2DPT

η
+

4ζ20
σ0

η(VT +G2),

which completes our proof. ■
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Proof of Theorem 3 We follow the idea to treat the dynamic regret by the meta-regret
and expert-regret as in the work by Hu et al. (2023). For any i ≤ N , it holds that

T∑
t=1

ft(xt)− ft(ut) =

T∑
t=1

ft(xt)− ft(xi,t)︸ ︷︷ ︸
meta−regret

+
T∑
t=1

ft(xt,i)− ft(ut)︸ ︷︷ ︸
expert−regret

.

Based on Theorem 2 of Hu et al. (2023), we obtain

meta−regret =

T∑
t=1

ft(xt)− ft(xi,t)

≤ 2 + lnN

β
+ 3D2

0β(VT +G2)+

+

T∑
t=2

(
3β(D4

0L
2 +D2

0G
2ζ20 )−

1

4β

)
∥wt − wt−1∥21

≤ max
(
2
√

3D2
0(VT +G2)(2 + lnN), 2(2 + lnN)

√
12(D4

0L
2 +D2

0G
2ζ20 )

)
.

Moreover, according to the dynamic regret in Theorem 1, for any index i with step size
ηi, we have:

expert−regret ≤
T∑
t=1

ft(xt,i)− ft(ut)

≤ D2
0 + 2D0PT

ηi
+

4ζ20
σ0

ηi(VT +G2).

Our step size pool H =
{
ηi = 2i−1

√
D2

0

16ζ20G
2T

}
ensures that

minH =

√
D2

0

16ζ20G
2T

≤
√

D2
0+2D0PT

4ζ20 (G
2+VT )

,

maxH ≥ σ0
ζ0L

.
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So for the optimal step size η∗ = min(

√
D2

0+PT

4ζ20 (G
2+VT )

, σ0
ζ0L

), there exists i∗ ≤ N such that

ηi∗ ≤ η∗ ≤ 2ηi∗ . Taking i = i∗, we have

expert−regret ≤
T∑
t=1

ft(xt,i)− ft(ut)

≤ D2
0 + 2D0PT

ηi∗
+

4ζ20
σ0

ηi∗(VT +G2)

≤ 4ζ20
σ0

(VT +G2)

√
D2

0 + 2D0PT

4ζ20 (G
2 + VT )

+ (D2
0 + 2D0PT )(

√
4ζ20 (G

2 + VT )

D2
0 + 2D0PT

+
4ζ0L

σ0
)

≤ 4ζ0√
σ0

√
(D2

0 + 2D0PT )((VT +G2)) + (D2
0 + 2D0PT )

4ζ0L

σ0
.

Combining meta-regret and expert-regret together, we finally get

T∑
t=1

ft(xt)− ft(ut) ≤ max
(
2
√
3D2

0(VT +G2)(2 + lnN), 2(2 + lnN)
√
12(D4

0L
2 +D2

0G
2ζ20 )

)
+

4ζ0√
σ0

√
(D2

0 + 2D0PT )((VT +G2)) + (D2
0 + 2D0PT )

4ζ0L

σ0

= O(
√
((VT + 1) lnN) lnN) +

ζ0√
σ0

bo(
√
(1 + PT + VT )(1 + PT ))

=
ζ0√
σ0

O(
√
(1 + PT + VT )(1 + PT )),

which completes our proof. ■

Appendix C. Computing the Corrected R-OOGD

We first recall the corrected version of ROGD

{
xt+1 = expxt

(−2η∇t + exp−1
xt

x̂t)

x̂t = expxt−1
(−η∇t−1 + exp−1

xt−1
x̂t−1).

To analyse the regret bound of the corrected version of R-OOGD, we follow (11) and get

0 ≤ ⟨exp−1
xt+1

x,Γxt
xt+1

(−2η∇t + exp−1
xt

x̂t)⟩+
1

2η
(d2(xt, x)− d2(xt+1, x))−

σ0
2η

d2(xt+1, xt).
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Thus, by g-convexity we have,

ft+1(xt+1)− ft+1(x) ≤ ⟨exp−1
xt+1

x,−∇t+1⟩
≤ ⟨exp−1

xt+1
x,−∇t+1 + Γxt+1

xt
(−2η∇t + exp−1

xt
x̂t)⟩

+
1

2η
(d2(xt, x)− d2(xt+1, x)) +

σ0
2η

d2(xt+1, xt)

= ⟨exp−1
xt+1

x,Γxt+1
xt

(∇t − Γxt
xt−1

∇t−1)⟩
− ⟨exp−1

xt+1
x,∇t+1 − Γxt+1

xt
∇t⟩

+
1

2η
(d2(xt, x)− d2(xt+1, x))−

σ0
2η

d2(xt+1, xt)

+ ⟨exp−1
xt+1

x,−Γxt+1
xt

(
Γxt
xt−1

η∇t−1 + exp−1
xt

x̂t
)
⟩. (18)

The expression (18) follows from the proof of Theorem 1 except the term

⟨exp−1
xt+1

x,−Γxt+1
xt

(
Γxt
xt−1

η∇t−1 + exp−1
xt

x̂t
)
⟩.

Applying Corollary 20 in the geodesic triangle △xt−1xtx̂t, we have

∥ exp−1
xt−1

x̂t − exp−1
xt−1

xt − Γxt−1
xt

exp−1
xt

x̂t∥
= ∥2η∇t−1 − exp−1

xt−1
x̂t−1 − η∇t−1 + exp−1

xt−1
x̂t−1 − Γxt−1

xt
exp−1

xt
x̂t∥

≤ d2(x̂t, p)Km∥ exp−1
xt−1

xt∥,

where p lies in the geodesic xt−1xt. Since

d(x̂t, p) ≤ d(x̂t, xt−1) + d(xt−1, xt)

≤ ∥ − 2η∇t−1 + η∇t−2 − η∇t−2 + exp−1
xt−1

x̂t−1∥
+ ∥ − η∇t−1 + η∇t−2 − η∇t−2 + exp−1

xt−1
x̂t−1∥

≤ 5ηG+ 2At−1,

and

∥ exp−1
xt−1

xt∥ ≤ 3ηG+At−1,

we have:

At ≤ Km(5ηG+ 2At−1)
2(3ηG+At−1), (19)

indicating that the distortion in iteration t− 1 evolves and accumulates in the distortion in
iteration t. In the worst case scenario where ηG = 0.1 and Km = 1, the equality always
holds. We observe that At → ∞, which implies that the corrected ROGD fails to achieve
sublinear static regret.

Appendix D. Proof of Theorem 5

We first prove Lemma 4.
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Proof of Lemma 4 We prove by induction on zt = (xt, yt). The base case d(z0, z
∗) ≤

D1 ≤ 2D1 is straightforwardly hold. Then we assume that there exists a K0 such that all
d(zt, z

∗) ≤ 2D1 holds for all t ≤ K0. Then we carry out induction step on K0 + 1. The
distance d(zK0+1, z

∗) can be first bounded as

d(zK0+1, z
∗) ≤ d(zK0 , z

∗) + d(zK0 , zK0+1) ≤ 2D1 + 3ηG ≤ 3D1.

So, by setting D0 = 3D1, ft(x) = f(x, yt) and plugging in u1 = u2 = · · · = un = x∗ in
the analysis of Theorem 1, the R-OOGD for player-X holds for all t ≤ K0

⟨exp−1
xt+1

x∗,−∇xf(xt+1, yt+1)⟩
≤ ⟨exp−1

xt+1
x∗,

(
∇xf(xt+1, yt+1)− Γxt+1

xt
∇yf(xt, yt)−

(
∇xf(xt, yt)

)
− Γxt

xt−1
f(xt−1, yt−1)

)
⟩

+
1

2η
(d2(xt, x

∗)− d2(xt+1, x
∗))− σ1

2η
d2(xt, xt+1)

≤ ⟨exp−1
xt+1

x∗,∇xf(xt+1, yt+1)− Γxt+1
xt

f(xt, yt)⟩

− ⟨exp−1
xt

x∗,∇xf(xt, yt)− Γxt
xt−1

f(xt−1, yt−1)⟩+
1

2η
(d2(xt, x

∗)− d2(xt+1, x
∗))

− σ1
2η

d2(xt, xt+1) + ζ1∥∇xf(xt, yt)− Γxt
xt−1

f(xt−1, yt−1)∥d(xt, xt+1). (20)

Similarly, the player-Y holds for all t ≤ K0

⟨exp−1
yt+1

y∗,∇yf(xt+1, yt+1)⟩
≤ ⟨exp−1

yt+1
y∗,∇yf(xt+1, yt+1)− Γyt+1

yt ∇yf(xt, yt)⟩

− ⟨exp−1
yt y∗,∇yf(xt, yt)− Γyt

yt−1
∇yf(xt−1, yt−1)⟩+

1

2η
(d2(yt, y

∗)− d2(yt+1, y
∗))

− σ1
2η

d2(yt, yt+1) + ζ1∥∇yf(xt, yt)− Γyt
yt−1

∇yf(xt−1, yt−1)∥d(yt, yt+1). (21)

Adding (20) and (21) together, for all t ≤ K0 + 1, we have

0 ≤ ⟨exp−1
zt+1

z∗,−F(zt+1)⟩
≤ ⟨exp−1

zt+1
z∗,−F(zt+1) + Γzt+1

zt F(zt)⟩ − ⟨exp−1
zt z∗,−F(zt) + Γzt

zt−1
F(zt−1)⟩

+
1

2η
(d2(xt, x

∗) + d2(yt, y
∗))− 1

2η
(d2(xt+1, x

∗) + d2(yt+1, y
∗))

+ ζ1∥∇yf(xt, yt)− Γyt
yt−1

∇yf(xt−1, yt−1)∥d(yt, yt+1)

+ ζ1∥∇xf(xt, yt)− Γxt
xt−1

f(xt−1, yt−1)∥d(xt, xt+1)

− σ1
2η

d2(xt, xt+1)−
σ1
2η

d2(yt, yt+1). (22)

Taking Young’s inequality with
a = (d(xt, xt+1), d(yt, yt+1))

b = (∥∇xf(xt, yt)− Γxt
xt−1

f(xt−1, yt−1)∥, ∥∇yf(xt, yt)− Γyt
yt−1∇yf(xt−1, yt−1)∥),

α = L,
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we have

a · b ≤ L

2
(d2(xt, xt+1) + d2(yt, yt+1))

+
1

2L
(∥∇xf(xt, yt)− Γxt

xt−1
f(xt−1, yt−1)∥2 + ∥∇yf(xt, yt)− Γyt

yt−1
∇yf(xt−1, yt−1)∥2).

≤ L

2
d2(zt, zt+1) +

1

2L
L2d2(zt−1, zt) =

L

2
(d2(zt, zt+1) + d2(zt−1, zt)). (23)

Plugging (23) into (22) yields

0 ≤ ⟨exp−1
zt+1

z∗,−F(zt+1)⟩
≤ ⟨exp−1

zt+1
z∗,−F(zt+1) + Γzt+1

zt F(zt)⟩ − ⟨exp−1
zt z∗,−F(zt) + Γzt

zt−1
F(zt−1)⟩

+
1

2η
(d2(zt, z

∗)− d2(zt+1, z
∗)) +

ζ1L

2
(d2(zt, zt+1) + d2(zt−1, zt))−

σ1
2η

d2(zt, zt+1). (24)

Since η ≤ ζ1
2σ1L

, we have −σ1
2η + ζ1L

2 ≤ − ζ1L
2 , which gives us

0 ≤ ⟨exp−1
zt+1

z∗,−F(zt+1)⟩
≤ ⟨exp−1

zt+1
z∗,−F(zt+1) + Γzt+1

zt F(zt)⟩ − ⟨exp−1
zt z∗,−F(zt) + Γzt

zt−1
F(zt−1)⟩

+
1

2η
(d2(zt, z

∗)− d2(zt+1, z
∗)) +

ζ1L

2
(−d2(zt, zt+1) + d2(zt−1, zt)). (25)

By summing (22) from t = 0 to K0, we observe that

0 ≤
K0∑
t=0

⟨exp−1
zt+1

z∗,−F(zt+1)⟩

≤ ⟨exp−1
zK0+1

z∗,−F(zK0+1) + Γ
zK0+1
zK0

F(zK0)⟩ − ⟨exp−1
z0 z∗,−F(z−1) + Γz0

z−1
F(z−1)⟩

+
1

2η
d2(z0, z

∗)− 1

2η
d2(zK0+1, z

∗)− ζ1L

2
d2(zK0 , zK0+1) +

ζ1L

2
d2(z0, z−1).

Furthermore, based on the fact that z0 = z−1, we can express that

0 ≤
K0∑
t=0

⟨exp−1
zt+1

z∗,−F(zt+1)⟩

≤ ⟨exp−1
zK0+1

z∗,−F(zK0+1) + Γ
zK0+1
zK0

F(zK0)⟩

+
1

2η
d2(z0, z

∗)− 1

2η
d2(zK0+1, z

∗)− ζ1L

2
d2(zK0 , zK0+1).
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Using g-L-smoothness again, we have

0 ≤
K0∑
t=0

⟨exp−1
zt+1

z∗,−F(zt+1)⟩

≤ Ld(zK0+1, z
∗)d(zK0+1, zK0) +

1

2η
d2(z0, z

∗)− 1

2η
d2(zK0+1, z

∗)− ζ1L

2
d2(zK0 , zK0+1)

≤ L

2
(d2(zK0+1, z

∗) + d2(zK0+1, zK0)) +
1

2η
d2(z0, z

∗)

− 1

2η
d2(zK0+1, z

∗)− ζ1L

2
d2(zK0 , zK0+1)

≤ L

2
d2(zK0+1, z

∗) +
1

2η
d2(z0, z

∗)− 1

2η
d2(zK0+1, z

∗).

The last inequality is due to ζ1 ≥ 1, and the inequality gives us

d2(zK0+1, z
∗) ≤ 1

1− ηL
d2(z0, z

∗) ≤ 1

1− σ1
2ζ1

d2(z0, z
∗) ≤ 2d2(z0, z

∗) = 2D2
1.

Thus, d2(zt, z
∗) ≤ 2D2

1 holds for t = K0 + 1, By mathematical induction, the claim
d2(zt, z

∗) ≤ 2D1 holds for all t ≥ 0, which completes our proof. ■
Now we shift our focus on proof of Theorem 5.

Proof of Theorem 5 By the g-convexity-concavity, for any (x, y) ∈ M×N , there holds{∑T
t=1 f(xt, y)−

∑T
t=1 f(xt, yt) ≤

∑T
t=1⟨∇yf(xt, yt), exp

−1
yt y⟩∑T

t=1 f(xt, yt)−
∑T

t=1 f(x, yt) ≤
∑T

t=1⟨−∇xf(xt, yt), exp
−1
xt

x⟩.

In this way, there holds

T∑
t=1

f(xt, y)−
T∑
t=1

f(x, yt) ≤
T∑
t=1

⟨∇yf(xt, yt), exp
−1
yt y⟩+

T∑
t=1

⟨−∇xf(xt, yt), exp
−1
xt

x⟩

=

T∑
t=1

⟨−F(zt), exp
−1
zt z⟩.

From the proof of Lemma 4, we can obtain

T∑
t=1

f(xt, y)−
T∑
t=1

f(x, yt) ≤
T∑
t=1

⟨−F(zt), exp
−1
zt z⟩

≤ ⟨exp−1
zT

z,−F(zT ) + ΓzT
zT−1

F(zT−1)⟩+
1

2η
d2(z0, z

∗)

− 1

2η
d2(zK0+1, z

∗)− ζ1L

2
d2(zK0 , zK0+1)

≤ 2D1G+
1

η
D2

1.
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To complete the proof, it remains to show that

f(x̄T , y)− f(x, ȳT ) ≤
1

T

T∑
t=1

f(xt, y)−
1

T

T∑
t=1

f(x, yt),

which can be proved by induction

f(x̄T , y) = f(expx̄t
(
1

T
exp−1

x̄T−1
xT ), y)

≤ 1

T
f(xT , y) +

T − 1

T
f(x̄T−1, y)

≤ 1

T
f(xT , y) +

T − 1

T

1

T − 1
f(xT−1, y) +

T − 1

T

T − 2

T − 1
f(x̄T−2, y)

≤ 1

T
f(xT , y) +

1

T
f(xT−1, y) + · · ·+ 1

T
f(x2, y) +

1

T
f(x̄1, y)

=
1

T

T∑
t=1

f(xt, y),

and

f(x, ȳT ) = f(x, expȳt(
1

T
exp−1

ȳT−1
yT ))

≥ 1

T
f(x, yT ) +

T − 1

T
f(x, ȳT−1)

≥ 1

T
f(x, yT ) +

1

T
f(x, yT−1) + · · ·+ 1

T
f(x, y2) +

1

T
f(x, ȳ1)

=
1

T

T∑
t=1

f(x, yt).

Then Theorem 5 has been established. ■

Appendix E. Proof of Lemma 6

We first propose some lemmas that are useful in proving Lemma 6.

Lemma 21 (A variant of Gauss-Bonnet theorem, Lee, 2018; Chern et al., 1999). Suppose M
is a manifold with sectional curvature in [κ,K] and Ξ(s, t) : [0, 1]× [0.1] → M is a rectangle
map. Γγ is the parallel transport around the boundary curve γ that γ = Ξ(t, 0) ∪ Ξ(1, s) ∪
Ξ(t, 1) ∪ Ξ(0, s). Denote vector fields S(Ξ(s, t)) = Ξ∗

∂
∂s(s, t), T (Ξ(s, t)) = Ξ∗

∂
∂t(s, t) and

Km = max(|κ|, |K|). Then we have

∥Γγz − z∥ ≤ 12Km∥z∥
∫ 1

0

∫ 1

0
∥T∥∥S∥dsdt,∀z ∈ TΞ(0,0)M.

Proof We first extend z to a vector field Z(s0, t0) = Z(Ξ(s0, t0)) by first parallel trans-
porting z along the curve Ξ(0, t), (0 ≤ t ≤ t0) and then parallel transporting along the curve
Ξ(s, t0), (0 ≤ s ≤ s0). It shows that{

∇SZ(s, t) = 0

∇TZ(0, t) = 0
∀(s, t) ∈ [0, 1]× [0, 1].
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For an arbitrary vector w ∈ TΞ(0,0)M, we also extend it to W (s0, t0) by first parallel
transporting along the curve Ξ(s, 0), (0 ≤ s ≤ 1), then along the curve Ξ(1, t), (0 ≤ t ≤ t0),
and along the curve Ξ(s, t0), (1 ≥ s ≥ s0). We can also have{

∇SW (s, t) = 0

∇TW (1, t) = 0
∀(s, t) ∈ [0, 1]× [0, 1].

We denote two curves that ξ1 = Ξ(s, 0), (0 ≤ s ≤ 1) and ξ2 = Ξ(s, 0)∪Ξ(1, t), (0 ≤ s, t ≤ 1).
By the above notation, we find

⟨Γγz − z, w⟩ = ⟨Γγz, w⟩ − ⟨z, w⟩
= ⟨Γξ2Γγz,Γξ2w⟩ − ⟨Γξ1z,Γξ2w⟩.

From the way we extend Z and W , we know that Γξ2Γγz = Z(1, 1), Γξ2w = W (1, 1),
Γξ1z = Z(1, 0), and Γξ2w = W (1, 0), thus we have

⟨Γγz − z, w⟩ = ⟨Z(1, 1),W (1, 1)⟩ − ⟨Z(1, 0)−W (1, 0)⟩

=

∫ 1

0

∂

∂t
⟨Z(1, t),W (1, t)⟩dt

=

∫ 1

0
T ⟨Z(1, t),W (1, t)⟩dt

=

∫ 1

0
⟨∇TZ(1, t),W (1, t)⟩+ ⟨Z(1, t),∇TW (1, t)⟩dt.

Due to the fact that ∇TW (1, t) = 0, we have

⟨Γγz − z, w⟩ =
∫ 1

0
⟨∇TZ(1, t),W (1, t)⟩dt

=

∫ 1

0

(
⟨∇TZ(0, t),W (0, t)⟩+

∫ 1

0
∂s⟨∇TZ(s, t),W (s, t)⟩ds

)
dt

=

∫ 1

0

∫ 1

0
⟨ ∂
∂s

⟨∇TZ(s, t),W (s, t)⟩dsdt

=

∫ 1

0

∫ 1

0
S⟨∇TZ(s, t),W (s, t)⟩dsdt

=

∫ 1

0

∫ 1

0
⟨∇S∇TZ(s, t),W (s, t)⟩+ ⟨∇TZ(s, t),∇SW (s, t)⟩dsdt

=

∫ 1

0

∫ 1

0
⟨∇S∇TZ(s, t),W (s, t)⟩dsdt.

The last equality is from the fact that ∇SW (s, t) = 0. Since the curvature has the form

R(S, T, Z,W ) = ⟨∇S∇TZ(s, t),W (s, t)⟩+ ⟨∇T∇SZ(s, t),W (s, t)⟩+ ⟨∇[S,T ]Z(s, t),W (s, t)⟩

and we have ∇SZ(s, t) = 0, [S, T ] = 0, it holds that

⟨Γγz − z, w⟩ =
∫ 1

0

∫ 1

0
R(S, T, Z,W )dsdt

=

∫ 1

0

∫ 1

0
R(

S

∥S∥
,

T

∥T∥
,

Z

∥Z∥
,

W

∥W∥
)∥S∥∥T∥∥W∥∥Z∥dsdt.
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By Lemma 14 and R(X,Y,X, Y ) ≤ Km∥X∥2∥Y ∥2, we have

R(
S

∥S∥
,

T

∥T∥
,

Z

∥Z∥
,

W

∥W∥
) ≤ 12Km.

Hence,

⟨Γγz − z, w⟩ ≤ 12Km

∫ 1

0

∫ 1

0
∥S∥∥T∥∥W∥∥Z∥dsdt

= 12Km∥z∥∥w∥
∫ 1

0

∫ 1

0
∥S∥∥T∥dsdt,

which completes our proof since w is arbitary.

Lemma 22. Suppose M is a manifold with sectional curvature in [κ,K] and γ : [0, b] → M
is a geodesic with ∥γ̇(0)∥ = 1 (b ≤ π√

K
if K > 0). If J is a Jacobi field along γ with

∥J(γ(0))∥ = α1 and ∥J(γ(b))∥ = α2, then we have

∥J(γ(t))∥ ≤ s(κ, b)

S(K, b)
(α1 + α2).

Proof We split J(γ(t)) = J1(γ(t))+J2(γ(t)), where J1 is a Jacobi field such that J1(γ(0)) =
0 and J1(γ(b)) = J(γ(b)), and where J2 is a Jacobi field such that J2(γ(b)) = 0 and
J2(γ(0)) = J(γ(0)). Applying the Jacobi comparison theorem (Lemma 15), we have{

S(K, b)∥∇γ̇J1(0)∥ ≤ ∥J1(γ(b))∥ = α2

S(K, b)∥∇γ̇J2(b)∥ ≤ ∥J2(γ(0))∥ = α1,
(26)

and {
∥J1(γ(t))∥ ≤ s(κ, t)∥∇γ̇J1(0)∥ ≤ s(κ, b)∥∇γ̇J1(0)∥
∥J2(γ(t))∥ ≤ s(κ, (b− t))∥∇γ̇J2(b)∥ ≤ s(κ, b)∥∇γ̇J2(b)∥.

(27)

Combining (26) and (27) we have{
∥J1(γ(t))∥ ≤ s(κ,b)

S(K,b)α1

∥J2(γ(t))∥ ≤ s(κ,b)
S(K,b)α2,

which gives us

∥J(γ(t))∥ ≤ ∥J1(γ(t))∥+ ∥J2(γ(t))∥ ≤ s(κ, b)

S(K, b)
(α1 + α2).

This completes the proof.

Lemma 23. Denote Km = max(|κ|, |K|). If 0 ≤ b ≤ 1√
Km

, then we have s(κ,b)
S(K,b) ≤ 3.
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Proof It suffice to proof the lemma in the case K ≥ 0 and κ ≤ 0. We first consider the
case where K > 0 and κ < 0, where

s(κ, b)

S(K, b)
=

√
K sinh(

√
−kb)

√
−κ sin(

√
Kb)

. (28)

We show that cosh(ax) ≤ (1 + a2x2) for 0 ≤ x ≤ 1
a . Let

f(x) = cosh(ax)− 1− a2x2.

We have 
f(0) = 0

f ′(x) = a sinh(ax)− 2a2x, f ′(0) = 0

f ′′(x) = a2(cosh(ax)− 2).

Since cosh(ax)− 2 ≤ 0 for 0 ≤ x ≤ 1
a , we have f(x) ≤ 0 for 0 ≤ x ≤ 1

a .
Then we show that sinh(ax)

sin(cx) ≤ a
c +

a(a2+c2)x2

c for 0 ≤ x ≤ 1
a . By defining

g(x) = sinh(ax)− (
a

c
+

a(a2 + c2)x2

c
) sin(cx),

we have {
g(0) = 0

g′(x) = a cosh(ax)− (a+ ax2(a2 + c2)) cos cx− (2a(a
2+c2)x
c )) sin cx

As 0 ≤ x ≤ 1
a , we have

g′(x) ≤ a(1 + a2x2)− (a+ ax2(a2 + c2)) cos cx− (
2a(a2 + c2)x

c
)) sin cx

≤ a(1 + a2x2)(1− cos cx)− 2acx sin cx

≤ a(1 + a2x2)(1− cos2 cx)− 2a sin2 cx

= a(1 + a2x2) sin2 cx− 2a sin2 cx

≤ a(−1 + a2x2) sin2 cx

≤ 0

And thus, we have

sinh(ax)− (
a

c
+

a(a2 + c2)x2

c
) sin(cx) ≤ 0, 0 ≤ x ≤ 1

a

which is equivalent to

sinh(ax)

sin(cx)
≤ a

c
+

a(a2 + c2)x2

c
, 0 ≤ x ≤ 1

a
(29)
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Putting (28) into (29) with a =
√
−κ and c =

√
K, we have, for 0 ≤ b ≤ 1√

Km

s(κ, b)

S(K, b)
=

√
K sinh(

√
−kb)

√
−κ sin(

√
Kb)

≤ 1 + (κ+K)b2.

≤ 1 + 2Km
1

Km

≤ 3,

which completes the proof for the where case K > 0 and κ < 0. Since s(κ,b)
S(K,b) is continuous

on K and κ, we have proved the case with K = 0 or κ = 0 by continuity.

Lemma 24. In Algorithm 4, if η ≤ 1
8L , it satisfies

1

2
≤ ∥F(zt+1)∥

∥F(zt)∥
≤ 3

2
. (30)

The proof is as same as that the prior work by Chavdarova et al. (2021), so we omit the
proof.

Then we begin our proof of Lemma 6.

Proof of Lemma 6 We first estimate the length d(zt−1, zt) by,

d(zt−1, zt) = ∥2ηF(zt−1)− Γzt−1
zt−2

η(F(zt−2))∥
≤ η∥F(zt−1)∥+ η∥F(zt−1)− Γzt−1

zt−2
(F(zt−2))∥

≤ η∥F(zt−1)∥+ ηLd(zt−1, zt−2)

= η∥F(zt−1)∥+ ηL∥2F(zt−2)− Γzt−2
zt−3

F(zt−3)∥
≤ η∥F(zt−1)∥+ ηL(∥2F(zt−2)∥+ ∥F(zt−3)∥).

By Lemma 24, we have ∥F(zt−2)∥ ≤ 2∥F(zt−1)∥ and ∥F(zt−3)∥ ≤ 4∥F(zt−1)∥. So, we have

d(zt−1, zt) ≤ (1 + 8Lη)η∥F(zt−1)∥. (31)

Similarly, d(ẑt+1, zt) and d(ẑt, zt−1) can be bounded by

d(ẑt+1, zt) = ∥ηF(zt)− Γzt
zt−1

F(zt−1)∥
≤ Lηd(zt, zt−1)

≤ Lη2∥2ηF(zt−1)− Γzt−1
zt−2

η(F(zt−2))∥
≤ Lη2(2∥F(zt−1)∥+ ∥F(zt−2)∥)
≤ 4Lη2∥F(zt−1)∥,

and

d(ẑt, zt−1) = η∥F(zt−1)− Γzt−1
zt−2

(F(zt−2))∥
≤ Lη2∥2F(zt−2)− Γzt−2

zt−3
(F(zt−3))∥

≤ 8Lη2∥F(zt−1)∥.
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Consequently, the lt := d(zt−1, zt) + d(ẑt+1, zt) + d(ẑt, zt−1) has the bound

lt ≤ (1 + 8Lη)η∥F(zt−1)∥+ 4Lη2∥F(zt−1)∥+ 8Lη2∥F(zt−1)∥
≤ (1 + 20Lη)η∥F(zt−1)∥.

Since η ≤ 1
20L , we have

lt ≤ 2η∥F(zt−1)∥. (32)

Now we examine (i). Applying Lemma 20 in the geodesic triangle △zt−1ẑt+1zt yields

exp−1
zt−1

ẑt+1 = H ẑt+1
zt−1,p1 exp

−1
zt−1

zt + Γzt−1
zt exp−1

zt ẑt+1, (33)

where p1 lies in the geodesic between zt−1 and zt. Applying Lemma 20 in the geodesic
triangle △zt−1ẑt+1ẑt yields

exp−1
zt−1

ẑt+1 = H ẑt+1
zt−1,p2 exp

−1
zt−1

ẑt + Γ
zt−1

ẑt
exp−1

ẑt
ẑt+1. (34)

where p2 lies in the geodesic between zt−1 and ẑt.
Combing (33) and (34), we have

H ẑt+1
zt−1,p2(−ηF(zt−1) + ηΓzt−1

zt−2
F(zt−2))− Γ

zt−1

ẑt
Γẑt
ẑt+1

Gt+1

= H ẑt+1
zt−1,p1(−2ηF(zt−1) + ηΓzt−1

zt−2
F(zt−2)) + Γzt−1

zt (−ηF(zt) + Γzt
zt−1

ηF(zt−1)). (35)

Rearranging (35), we have

Γ
zt−1

ẑt
Γẑt
ẑt+1

Gt+1 − Γzt−1
zt (ηF(zt)) = (H ẑt+1

zt−1,p2 − Id)(−ηF(zt−1) + ηΓzt−1
zt−2

F(zt−2))

− (H ẑt+1
zt−1,p1 − Id)(−2ηF(zt−1) + ηΓzt−1

zt−2
F(zt−2)).

By Corollary 20, we have

∥Γzt−1

ẑt
Γẑt
ẑt+1

Gt+1 − ηΓzt−1
zt F(zt)∥ ≤ Kmd2(ẑt+1, p1)d(zt−1, ẑt) +Kmd2(ẑt+1, p2)d(zt−1, zt).

Since p1 lies in the geodesic between zt−1 and zt, we have d(ẑt+1, p1) ≤ d(ẑt+1, zt) +
d(ẑt, zt−1) ≤ lt. Also, we have d(ẑt+1, p2) ≤ lt. Then, we have

∥Γzt−1

ẑt
Γẑt
ẑt+1

Gt+1 − ηΓzt−1
zt F(zt)∥ ≤ Kml2t (d(zt−1, ẑt) + d(zt−1, zt))

≤ Kml3t = Km8η3∥F(zt−1)∥3.

Then,

∥Gt+1∥2 − ∥ηF(zt)∥2 = ∥Γzt−1

ẑt
Γẑt
ẑt+1

Gt+1∥2 − ∥ηΓzt−1
zt F(zt)∥2

≤ ∥Γzt−1

ẑt
Γẑt
ẑt+1

Gt+1 − ηΓzt−1
zt F(zt)∥2 = 64Kmη6∥F(zt−1)∥6.

Next we examine (ii). It is shown that

∥Γzt
ẑt+1

Gt+1 − ηF(zt)∥ ≤ ∥Γzt
ẑt+1

Gt+1 − Γzt
ẑt+1

Γ
ẑt+1

ẑt
Γẑt
zt−1

Γzt−1
zt ηF(zt)∥

+ ∥Γzt
ẑt+1

Γ
ẑt+1

ẑt
Γẑt
zt−1

Γzt−1
zt ηF(zt)− ηF(zt)∥

= ∥Γzt−1

ẑt
Γẑt
ẑt+1

Gt+1 − ηΓzt−1
zt F(zt)∥

+ ∥Γzt
ẑt+1

Γ
ẑt+1

ẑt
Γẑt
zt−1

Γzt−1
zt ηF(zt)− ηF(zt)∥

≤ Km8η3∥F(zt−1)∥3 + ∥Γzt
ẑt+1

Γ
ẑt+1

ẑt
Γẑt
zt−1

Γzt−1
zt ηF(zt)− ηF(zt)∥.
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We turn our focus on the geodesic rectangle ztzt−1ẑtẑt+1. Denote γ1(s) : [0, 1] → M as the
geodesic from zt−1 to ẑt and γ1(s) : [0, 1] → M as the geodesic from zt to ẑt+1. We define a
rectangle map Ξ : [0, 1]× [0, 1] → M such that

Ξ(s, t) = expγ1(s)(t exp
−1
γ1(s)

γ2(s)).

The boundary curve of Ξ is the geodesic rectangle ztzt−1ẑtẑt+1. Denote S = Ξ∗(
∂
∂s) and

T = Ξ∗(
∂
∂t). From Lemma 21, we have

∥Γzt
ẑt+1

Γ
ẑt+1

ẑt
Γẑt
zt−1

Γzt−1
zt ηF(zt)− ηF(zt)∥ ≤ 12Kmη∥F(zt)∥

∫ 1

0

∫ 1

0
∥S∥∥T∥dsdt. (36)

Notice that each t-curve is a geodesic from γ1(s) to γ2(s), we have

∥T (s, t)∥ = (d(γ1(s), γ2(s)))

≤ (d(γ1(s), zt−1) + d(zt−1, zt) + d(γ2(s), zt))

≤ (d(ẑt, zt−1) + d(zt−1, zt) + d(ẑt+1, zt))

≤ lt = 2η∥F(zt−1)∥. (37)

Moreover, the vector field S is a Jacobi field along every t-curve with ∥S(s, 0)∥ = d(ẑt, zt−1)
and ∥S(s, 1)∥ = d(zt, ẑt+1). By Lemma 22, we have

∥S(s, t)∥ ≤ s(κ, ∥T (s, t)∥)
S(K, ∥T (s, t)∥)

(d(ẑt, zt−1) + d(zt, ẑt+1)).

Since η ≤ 1
2
√
KmG

, we have ∥T (s, t)∥ ≤ 2η∥F(zt−1)∥ ≤ 1√
Km

, and thus by Lemma 23

∥S(s, t)∥ ≤ s(κ, ∥T (s, t)∥)
S(K, ∥T (s, t)∥)

(d(ẑt, zt−1) + d(zt, ẑt+1))

≤ 3(d(ẑt, zt−1) + d(zt, ẑt+1))

With d(ẑt, zt−1) ≤ 4Lη2∥F(zt−1)∥ , d(zt, ẑt+1) ≤ 8Lη2∥F(zt−1)∥ and η ≤ 1
20L , we have

∥S(s, t)∥ ≤ 9

5
η∥F(zt−1)∥ ≤ 2η∥F(zt−1)∥ (38)

Taking (37) and (38) in (36), we have

∥Γzt
ẑt+1

Γ
ẑt+1

ẑt
Γẑt
zt−1

Γzt−1
zt ηF(zt)− ηF(zt)∥ ≤ 12Kmη∥F(zt)∥ · 4η2∥F(zt−1)∥2

≤ 12Kmη8η2∥F(zt−1)∥3 = 96Kmη3∥F(zt−1)∥3.

Thus, we have

∥Γzt
ẑt+1

Gt+1 − ηF(zt)∥ ≤ Km8η3∥F(zt−1)∥3 + ∥Γzt
ẑt+1

Γ
ẑt+1

ẑt
Γẑt
zt−1

Γzt−1
zt ηF(zt)− ηF(zt)∥

≤ Km8η3∥F(zt−1)∥3 + 96Kmη3∥F(zt−1)∥3

= 104Kmη3∥F(zt−1)∥3,

which completes our proof. ■
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Appendix F. Proof of Theorems 7 and 8

Proof of Theorem 7 Define ẑt+1 = expzt(ηF(zt) + Γzt
zt−1

F(zt−1)). We consider the
following Lyapunov function

ϕt+1 := d(ẑt+1, z
∗) + σ1d

2(zt+1, ẑt+2)

= d(ẑt+1, z
∗) + σ1η

2∥∇F(zt+1)− Γzt+1
zt F(zt)∥2.

The difference between ϕt+2 and ϕt+1 is

ϕt+2 − ϕt+1 = d2(ẑt+2, z
∗)− d2(ẑt+1, z

∗) + 2σ1⟨ηF(zt+1),Γ
zt+1
zt ηF(zt)⟩

+ σ1η
2(∥F(zt+2)∥2 − ∥F(zt)∥2 − 2⟨F(zt+2),Γ

zt+2
zt+1

F(zt+1)⟩. (39)

In the geodesic △ẑt+1ẑt+2z
∗, Lemma 4 and Lemma 17 give

d2(ẑt+2, z
∗)− d2(ẑt+1, z

∗) ≤ 2⟨Gt+2, exp
−1
ẑt+2

z∗⟩ − σ1∥Gt+2∥2, (40)

where Gt+2 = exp−1
ẑt+2

ẑt+1. Substituting (40) into (39), we have

ϕt+2 − ϕt+1 = 2⟨Gt+2, exp
−1
ẑt+2

z∗⟩ − σ1∥Gt+2∥2 + 2σ1⟨ηF(zt+1),Γ
zt+1
zt ηF(zt)⟩

+ σ1η
2(∥F(zt+2)∥2 − ∥F(zt)∥2 − 2⟨F(zt+2),Γ

zt+2
zt+1

F(zt+1))⟩.

With a matter of algebraic calculations, we have

ϕt+2 − ϕt+1 ≤ 2⟨Gt+2, exp
−1
ẑt+2

z∗⟩+ 2σ1⟨ηF(zt+1),−ηF(zt+1) + ηΓzt+1
zt F(zt)⟩

+ ησ1
(
∥F(zt+2)∥2 − ∥F(zt)∥2 + ∥F(zt+1)∥2 − 2⟨ηF(zt+2), ηΓ

zt+2
zt+1

F(zt+1)⟩
)

+ σ1(∥ηF(zt+1)∥2 − ∥Gt+2∥2). (41)

We define
A := 2⟨Gt+2, exp

−1
ẑt+2

z∗⟩+ 2σ1⟨ηF(zt+1),−ηF(zt+1) + ηΓ
zt+1
zt F(zt)⟩;

B := ησ1
(
∥F(zt+2)∥2 − ∥F(zt)∥2 + ∥F(zt+1)∥2 − 2⟨ηF(zt+2), ηΓ

zt+2
zt+1F(zt+1)⟩

)
;

C := σ1(∥ηF(zt+1)∥2 − ∥Gt+2∥2).

and analyze them term by term.
We rewrite A as

A =2⟨Γzt+1

ẑt+2
Gt+2,Γ

zt+1

ẑt+2
exp−1

ẑt+2
z∗⟩+ 2σ1⟨ηF(zt+1),−ηF(zt+1) + ηΓzt+1

zt F(zt)⟩

= 2⟨Γzt+1

ẑt+2
exp−1

ẑt+2
z∗,Γ

zt+1

ẑt+2
Gt+2 − ηF(zt+1)⟩

+ 2⟨Γzt+1

ẑt+2
exp−1

ẑt+2
z∗ − exp−1

zt+1
z∗, ηF(zt+1)⟩

+ 2⟨exp−1
zt+1

z∗, ηF(zt+1)⟩+ 2σ1⟨ηF(zt+1),−ηF(zt+1) + ηΓzt+1
zt F(zt)⟩. (42)

According to Lemma 19, there exists a point p in the geodesic between zt+1 and ẑt+2

such that

exp−1
zt+1

z∗ − Γ
zt+1

ẑt+2
exp−1

ẑt+2
z∗ = Hz∗

zt+1,p(−ηF(zt+1) + ηΓzt+1
zt F(zt)). (43)
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Combining (42) and (43), we have

A = 2⟨Γẑt+1

ẑt+2
Gt+2 − ηF(zt+1),Γ

ẑt+1

ẑt+2
exp−1

ẑt+2
z∗⟩

+ 2⟨ηF(zt+1), (−Hz∗
zt+1,p + σ1Id)[−ηF(zt+1)] + ηΓzt+1

zt F(zt)⟩
+ 2⟨ηF(zt+1), exp

−1
zt+1

z∗⟩.

Since the eigenvalue of −Hz∗
zt+1,p lies in [−ζ1,−σ1], we have

⟨ηF(zt+1), (−Hz∗
zt+1,p + σ1)− ηF(zt+1) + ηΓzt+1

zt F(zt)⟩
≤ (ζ1 − σ1)∥ηF(zt+1)− ηΓzt+1

zt F(zt)∥∥ηF(zt+1)∥
≤ (ζ1 − σ1)Lη

2d(zt+1, zt)∥F(zt+1)∥.

In Lemma 6,we know that d(zt+1, zt) ≤ η(1+8Lη)∥F(zt)∥. Putting them together, we have

⟨ηF(zt+1), (−Hz∗
zt+1,p + σ1)− ηF(zt+1) + ηΓzt+1

zt F(zt)⟩
≤ (ζ1 − σ1)Lη

3(1 + 8Lη)∥F(zt)∥∥F(zt+1)∥
≤ 2(ζ1 − σ1)Lη

3(1 + 8Lη)∥F(zt)∥2.

Moreover, by Lemma 6, we have

⟨Γẑt+1

ẑt+2
Gt+2 − ηF(zt+1),Γ

ẑt+1

ẑt+2
exp−1

ẑt+2
z∗⟩ ≤ d(ẑt+2, z

∗)104η3∥F(zt)∥3

≤ (D + 4Lη2∥F(zt)∥)104Kmη3∥F(zt)∥3.

Hence, we have

A ≤ 2(D + 4Lη2∥F(zt)∥)104η3∥F(zt)∥3 + 2(ζ1 − σ1)Lη
3(1 + 8Lη)2∥F(zt)∥2

+ 2⟨ηF(zt+1), exp
−1
zt+1

z∗⟩.

Since η ≤ 1
2G and η ≤ 1

20L , we can find

A ≤ 104Km(2D +
1

5
)η3∥F(zt)∥3 +

28

5
(ζ1 − σ1)Lη

3∥F(zt)∥2 + 2⟨ηF(zt+1), exp
−1
zt+1

z∗⟩.
(44)

Next we analyze B and C as follows.

B = η2σ1(∥Fzt+2 − Γt+2
t+1F(zt+1)∥2 − ∥F(zt)∥2)

≤ η2σ1(L
2d2(zt+2, zt+1)− ∥F(zt)∥2)

≤ η2σ1(4L
2η2∥F(zt)∥2 − ∥F(zt)∥2)

≤ η2σ1(
1

5
Lη∥F(zt)∥2 − ∥F(zt)∥2), (45)

C ≤ σ164η
6∥F(zt)∥6Km ≤ 8σ1Kmη3∥F(zt)∥3. (46)
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Finally, taking (44), (45) and (46) in (41), we have

ϕt+2 − ϕt+1 ≤

η2∥F(zt)∥2
(
104Km(2D +

1

5
)η∥F(zt)∥+

28

5
(ζ1 − σ1)Lη + σ1Kmη∥F(zt)∥+

σ1L

5
η − σ1

)
+ 2⟨ηF(zt+1), exp

−1
zt+1

z∗⟩. (47)

Because f is g-convex-concave, we have

2⟨ηF(zt+1), exp
−1
zt+1

z∗⟩ ≤ 0,

By g-G-Lipschitz, we have

ϕt+2 − ϕt+1 ≤ η2∥F(zt)∥2
(
(104Km(2D +

1

5
)G+

28

5
(ζ1 − σ1)L+ σ1KmG+

σ1L

5
)η − σ1

)
.

Since

η ≤ σ1

2(104Km(2D + 1
5)G+ 28

5 (ζ1 − σ1)L+ σ1KmG+ σ1L
5 )

,

we have

ϕt+2 − ϕt+1 ≤ −σ1
2
η2∥F(zt)∥2. (48)

Summing (48) from t = 0, 1, 2 . . . yields

∞∑
t=1

∥F(zt)∥2 ≤
2

σ1η2
ϕ1 ≤

2D2

σ1η2
,

which immediately indicates that

min
t≤T

∥∇f(zt)∥ ≤ 2D

η
√
σ1T

,

and

lim
t→∞

∥∇f(zt)∥ = 0.

In this way, we have completed our proof. ■

Proof of Theorem 7 The g-strongly convexity-strongly concavity implies

2⟨ηF(zt+1), exp
−1
zt+1

z∗⟩ ≤ −µηd2(zt+1, z
∗).

By Young’s inequality, we have

2⟨ηF(zt+1), exp
−1
zt+1

z∗⟩ ≤ −µηd2(zt+1, z
∗)

≤ µηd2(zt+1, ẑt+2)−
µη

2
d2(ẑt+2, z

∗). (49)
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Putting (49) into (47) and Υ = 104Km(2D+ 1
5)G+ 28

5 (ζ1 − σ1)L+ σ1KmG+ σ1L
5 , we write

ϕt+2 − ϕt+1 ≤η2∥F(zt)∥2(Υη − σ1) + µηd2(zt+1, ẑt+2)−
µη

2
d2(ẑt+2, z

∗)

= η2∥F(zt)∥2(Υη − σ1) + µηd2(zt+1, ẑt+2)−
µη

2
ϕt+2

+
µη

2
σ1η

2∥F(zt+2)− Γzt+2
zt+1

F(zt+1)∥2. (50)

From the proof Lemma 6, we have{
d(zt+1, ẑt+2) ≤ 2η∥F(zt)∥
η∥F(zt+2)− Γ

zt+2
zt+1F(zt+1)∥ = d(zt+2, ẑt+3) ≤ 2η∥F(zt+1)∥ ≤ 4η∥F(zt)∥.

(51)

Taking (51) in (50), we have

(1 +
µη

2
)ϕt+2 − ϕt+1 ≤ η2∥F(zt)∥2(Υη + 4µη + 8σ1η − σ1).

Since

η ≤ σ1
Υ+ 4µ+ 8σµ

,

we have

ϕt+2 ≤
1

1 + µη/2
ϕt+1, (52)

which give us {
σ1d

2(zt, ẑt+1) ≤ ϕt ≤ ( 1
1+µη/2)

tϕ1

d2(ẑt+1, z
∗) ≤ ϕt+1 ≤ ( 1

1+µη/2)
t+1ϕ1.

Finally, we get

d2(zt, z
∗) ≤ 2(d2(zt, ẑt+1) + d2(ẑt+1, z

∗))

≤ 2(1 +
1

σ1
)(

1

1 + µη/2
)tϕ1

= 2(1 +
1

σ1
)(

1

1 + µη/2
)td2(z1, z

∗),

which completes our proof.
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